Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 67, Number 5, September-October 2012
Page(s) 841 - 855
DOI https://doi.org/10.2516/ogst/2012044
Published online 14 November 2012
  • Evensen G. (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res. 99, C5, 10, 143, 162. [Google Scholar]
  • Lorentzen R.J., Kåre Fjelde K., Frøyen J., Lage A.C.V.M., Nævdal G., Vefring E.H. (2001) Underbalanced and low-head drilling operations : Real time interpretation of measured data and operational support, SPE Annual Technical Conference and Exhibition, 30 September-3 October, SPE Paper 71384. [Google Scholar]
  • Nævdal G., Mannseth T., Vefring E.H. (2002) Near-well reservoir monitoring through ensemble Kalman filter, SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma, 13-17 April, SPE Paper 75235. [Google Scholar]
  • Haugen V., Natvik L.J., Evensen G., Berg A., Flornes K., Nævdal. G. (2006) History matching using the ensemble Kalman filter on a North Sea field case, SPE Annual Technical Conference and Exhibition, San Antonio, Texas, 24-27 Sept. Society of Petroleum Engineers, SPE Paper 102430. [Google Scholar]
  • Evensen G., Hove J., Meisingset H.C., Reiso E., Seim K.S., Espelid Ø. (2007) Using the EnKF for assisted history matching of a North Sea reservoir model, SPE Reservoir Simulation Symposium, Woodlands, Texas, 26-28 February, Society of Petroleum Engineers, SPE Paper 106184. [Google Scholar]
  • Bianco A., Cominelli A., Dovera L., Naevdal G., Vallès B. (2007) History matching and production forecast uncertainty by means of the ensemble Kalman filter : A real field application, SPE Europec/EAGE Annual Conference and Exhibition, London, UK, 11-14 June, Society of Petroleum Engineers, SPE Paper 107161. [Google Scholar]
  • Aanonsen S.I., Naevdal G., Oliver D.S., Reynolds A.C., Vallès B. (2009) The ensemble Kalman filter in reservoir engineering – a review, SPE J. 14, 3, 393-412. [Google Scholar]
  • Seiler A., Aanonsen S.I., Evensen G., Rivenæs J.C. (2010) Structural surface uncertainty modeling and updating using the ensemble Kalman filter, SPE J. 15, 4, 1062-1076. [Google Scholar]
  • Chen Y., Oliver D.S. (2012) Localization of ensemble-based control-setting updates for production optimization, SPE J. 17, 1, 122-136. [Google Scholar]
  • Lorentzen R.J., Flornes K.M., Nævdal G. (2012) History matching channelized reservoirs using the ensemble Kalman filter, SPE J. 17, 1, 137-151. [Google Scholar]
  • Verlaan M., Heemink A.W. (2001) Nonlinearity in data assimilation applications : A practical method for analysis, Mon. Weather Rev. 129, 6, 1578-1589. [CrossRef] [Google Scholar]
  • Bishop C.H., Etherton B.J., Majumdar S.J. (2001) Adaptive sampling with the ensemble transform Kalman filter. Part I : Theoretical aspects, Mont. Weather Rev. 129, 420-436. [Google Scholar]
  • Tippett M.K., Anderson J.L., Bishop C.H., Hamill T.M., Whitaker J.S. (2003) Ensemble square-root filters, Mon. Weather Rev. 131, 7, 1485-1490. [Google Scholar]
  • Vallès B., Nævdal G. (2009) Revisiting Brugge case study using a hierarchical ensemble Kalman filter, International Petroleum Technology Conference, Doha, Qatar, 7-9 Dec., IPTC-14074. [Google Scholar]
  • Anderson J.L. (2007) Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter, Physica D 230, 99-111. [Google Scholar]
  • Stordal A.S., Karlsen H.A., Nævdal G., Skaug H.J., Vallès B. (2011) Bridging the ensemble Kalman filter and particle filters : the adaptive Gaussian mixture filter, Comput. Geosci. 15, 2, 293-305. [Google Scholar]
  • Burgers G., van Leeuwen P.J., Evensen G. (1998) On the analysis scheme in the ensemble Kalman filter, Mon. Weather Rev. 126, 1719-1724. [Google Scholar]
  • Houtekamer P.L., Mitchell L.H. (1998) Data assimilation using an ensemble Kalman filter technique, Mon. Weather Rev. 126, 796-811. [CrossRef] [Google Scholar]
  • Whitaker J.S., Hamil T.M. (2002) Ensemble data assimilation without perturbed observations, Mon. Weather Rev. 130, 1913-1924. [CrossRef] [Google Scholar]
  • Sakov P., Oke P.R. (2008) Implications of the form of the ensemble transformation in the ensemble square root filters, Mon. Weather. Rev. 136, 1042-1053. [CrossRef] [Google Scholar]
  • Julier S.J., Uhlmann J.K. (1997) A new extension to the Kalman filter to nonlinear systems, Proceedings of AeroSens : The 11th International Symposium on Aerospace/Defense Sensing, Simulation and Controls, Orlando, Florida, 20-25 Avril. [Google Scholar]
  • Floris F.J.T., Bush M.D., Cuypers M., Roggero F., Syversveen A.R. (2001) Methods for quantifying the uncertainty of production forecasts : a comparative study, Petrol. Geosci. 7, 87-96. [Google Scholar]
  • PUNQ-S3 (2012) website : http://www3.imperial.ac.uk/earthscienceandengineering/research/perm/punq-s3model. [Google Scholar]
  • Deutsch C.V., Journel A.G. (1998) GSLIB Geostatistical Software Library and User’s Guide, Applied Geostatistics Series, Oxford University Press, second edition. [Google Scholar]
  • Lorentzen R.J., Nævdal G., Vallès B., Berg A.M., Grimstad A.-A. (2005) Analysis of the ensemble Kalman filter for estimation of permeability and porosity in reservoir models, SPE Annual Technical Conference and Exhibition, Dallas, Texas, 9-12 October, SPE Paper 96375. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.