Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 67, Number 5, September-October 2012
Page(s) 857 - 875
DOI https://doi.org/10.2516/ogst/2012064
Published online 04 December 2012
  • Cardiff M.,Barrash W. (2011) 3-D transient hydraulic tomography in unconfined aquifers with fast drainage response, Water Resour. Res. 47, W12518. [Google Scholar]
  • Liu S.,Yeh T.C.J.,Gardiner R. (2002) Effectiveness of hydraulic tomography : Sandbox experiments, Water Resour. Res. 38, 4, 5-5. [Google Scholar]
  • Liu X.,Kitanidis P.K. (2011) Large-scale inverse modeling with an application in hydraulic tomography, Water Resour. Res. 47, 2, W02501. [Google Scholar]
  • Zhu J.,Yeh T.C.J. (2005) Characterization of aquifer heterogeneity using transient hydraulic tomography, Water Resour. Res. 41, 7, W07028. [Google Scholar]
  • Berryman J.G. (2000) Analysis of approximate inverses in tomography i. resolution analysis of common inverses, Optim. Eng. 1, 1, 87-115. [CrossRef] [MathSciNet] [Google Scholar]
  • Berryman J.G. (2000) Analysis of approximate inverses in tomography ii. iterative inverses, Optim. Eng. 1, 4, 437-473. [CrossRef] [MathSciNet] [Google Scholar]
  • Lazaratos S.K., Marion B.P. (1996) Crosswell seismic imaging of reservoir changes caused by CO2 injection, in 1996 SEG Annual Meeting, Denver, Colorado, 10-15 Nov. [Google Scholar]
  • Daily W.,Ramirez A.,LaBrecque D.,Nitao J. (1992) Electrical resistivity tomography of vadose water movement, Water Resour. Res. 28, 5IFP Energies nouvelles International Conference: Pore2Field – Flows and Mechanics, 1429-1442. [Google Scholar]
  • Kemna A.,Kulessa B.,Vereecken H. (2002) Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ert) and equivalent transport models, J. Hydrol. 267, 3-4, 125-146. [CrossRef] [Google Scholar]
  • Akçelik V.,Biros G.,Ghattas O.,Long K.R.,Waanders B.B. (2003) A variational finite element method for source inversion for convective-diffusive transport, Finite Elements Anal. Des. 39, 683-705. [CrossRef] [Google Scholar]
  • Akçelik V., Biros G., Draganescu A., Hill J., Ghattas O., Waanders B.V.B. (2005) Dynamic data-driven inversion for terascale simulations : Real-time identification of airborne contaminants, Proceedings of the ACM/IEEE 2005 conference on Supercomputing, Washington, 12-18 Nov., 43. IEEE Computer Society. [Google Scholar]
  • Flath H.P.,Ghattas O. (2011) Fast algorithms for bayesian uncertainty quantification in large-scale linear inverse problems based on low-rank partial hessian approximations, SIAM J. Sci. Comput. 33, 1, 407-432. [Google Scholar]
  • Michalak A.M.,Kitanidis P.K. (2003) A method for enforcing parameter nonnegativity in bayesian inverse problems with an application to contaminant source identification, Water Resour. Res. 39, 2, 1033. [Google Scholar]
  • Kitanidis P.K. (1995) Quasi-linear geostatistical theory for inversing, Water Resour. Res. 31, 10, 2411-2419. [Google Scholar]
  • Kitanidis P.K. (2007) On stochastic inverse modeling, in Subsurface Hydrology : Data Integration for Properties and Processes, Hyndman D.W., Day-Lewis F.D., Singha K. (eds), American Geophysical Union (AGU), Washingtom, D.C., Geophysical Monogr. Ser. 171, 19-30, doi : 10.1029/171GM04. [CrossRef] [Google Scholar]
  • Kitanidis P.K. (2011) Bayesian and geostatistical Approaches to Inverse Problems, in Large-Scale Inverse Problems and Quantification of Uncertainty, Biegler L. (ed.), John Wiley and Sons, Ltd, Chichester, UK, doi : 10.1002/9780470685853.ch4. [Google Scholar]
  • Ambikasaran S., Li J.Y., Kitanidis P.K., Darve E.F. (2012) Large-scale stochastic linear inversion using hierarchical matrices. under review, Comput. Geosci. [Google Scholar]
  • Saibaba A.K.,Kitanidis P.K. (2012) Efficient methods for large-scale linear inversion using a geostatistical approach, Water Resour. Res. 48, 5IFP Energies nouvelles International Conference: Pore2Field – Flows and Mechanics, W05522. [Google Scholar]
  • Bebendorf M. (2008) Hierarchical Matrices : A Means to Efficiently Solve Elliptic Boundary Value Problems, Lecture Notes in Computational Science and Engineering (LNCSE) 63. Springer-Verlag, ISBN 978-3-540-77146-3. [Google Scholar]
  • Börm S., Grasedyck L., Hackbusch W. (2003) Hierarchical matrices, Lecture Notes 21/2003. [Google Scholar]
  • Börm S.,Grasedyck L.,Hackbusch W. (2003) Introduction to hierarchical matrices with applications, Eng. Anal. Bound. Elem. 27, 5IFP Energies nouvelles International Conference: Pore2Field – Flows and Mechanics, 405-422. [Google Scholar]
  • Grasedyck L.,Hackbusch W. (2003) Construction and arithmetics of h-matrices, Computing 70. [Google Scholar]
  • Hackbusch W., Grasedyck L., Börm S. (2001) An introduction to hierarchical matrices, Max-Planck-Inst. für Mathematik in den Naturwiss. [Google Scholar]
  • Rjasanow S., Steinbach O. (2007) The fast solution of boundary integral equations. Mathematical and Analytical Techniques with Applications to Engineering, Springer, New York. [Google Scholar]
  • Furrer R.,Genton M.G.,Nychka D. (2006) Covariance tapering for interpolation of large spatial datasets, J. Comput. Graphical Stat. 15, 3, 502-523. [Google Scholar]
  • Kaufman C.G.,Schervish M.J.,Nychka D.W. (2008) Covariance tapering for likelihood-based estimation in large spatial data sets, J. Am. Stat. Assoc. 103, 484, 1545-1555. [Google Scholar]
  • Huang H.C.,Cressie N.,Gabrosek J. (2002) Fast, resolution-consistent spatial prediction of global processes from satellite data, J. Comput. Graphical Stat. 11, 1, 63-88. [CrossRef] [Google Scholar]
  • Johannesson G., Cressie N. (2004) Variance-covariance modeling and estimation for multi-resolution spatial models, geoENV IV-Geostatistics for Environmental Applications, pp. 319-330. [Google Scholar]
  • Johannesson G.,Cressie N.,Huang H.C. (2007) Dynamic multi-resolution spatial models, Environ. Ecol. Stat. 14, 1, 5-25. [Google Scholar]
  • Cressie N.,Johannesson G. (2008) Fixed rank kriging for very large spatial data sets, J. R. Stat. Soc. : Ser. B Stat. Methodol. 70, 1, 209-226. [CrossRef] [MathSciNet] [Google Scholar]
  • Christakos G. (1984) On the problem of permissible covariance and variogram models, Water Resour. Res. 20, 2, 251-265. [Google Scholar]
  • Matheron G. (1973) The intrinsic random functions and their applications, Adv. Appl. Prob. 439-468. [Google Scholar]
  • Khoromskij B.N.,Litvinenko A.,Matthies H.G. (2009) Application of hierarchical matrices for computing the karhunen–loève expansion, Computing 84, 1, 49-67. [CrossRef] [MathSciNet] [Google Scholar]
  • Stein M.L. (1999) Interpolation of Spatial Data : some theory for kriging, Springer Verlag. [Google Scholar]
  • Matheron G. (1963) Principles of geostatistics, Econ. Geol. 58, 8, 1246-1266. [CrossRef] [Google Scholar]
  • Fong W.,Darve E. (2009) The black-box fast multipole method, J. Comput. Phys. 228, 23, 8712-8725. [Google Scholar]
  • Greengard L.,Rokhlin V. (1987) A fast algorithm for particle simulations, J. Comput. Phys. 73, 2, 325-348. [Google Scholar]
  • Ying L.,Biros G.,Zorin D. (2004) A kernel-independent adaptive fast multipole algorithm in two and three dimensions, J. Comput. Phys. 196, 2, 591-626. [Google Scholar]
  • Nowak W.,Cirpka O.A. (2006) Geostatistical inference of hydraulic conductivity and dispersivities from hydraulic heads and tracer data, Water Resour. Res. 42, 8, 8416. [Google Scholar]
  • Fritz J.,Neuweiler I.,Nowak W. (2009) Application of fft-based algorithms for large-scale universal kriging problems, Math. Geosci. 41, 5IFP Energies nouvelles International Conference: Pore2Field – Flows and Mechanics, 509-533. [CrossRef] [Google Scholar]
  • Golub G.H., Van Loan C.F. (1996) Matrix computations, 3rd ed., Johns Hopkins University Press. [Google Scholar]
  • Bebendorf M. (2000) Approximation of boundary element matrices, Numerische Mathematik 86, 4, 565-589. [CrossRef] [MathSciNet] [Google Scholar]
  • Chandrasekaran S.,Gu M.,Lyons W. (2005) A fast adaptive solver for hierarchically semiseparable representations, Calcolo 42, 3, 171-185. [CrossRef] [MathSciNet] [Google Scholar]
  • Chandrasekaran S.,Gu M.,Pals T. (2006) A fast ulv decomposition solver for hierarchically semiseparable representations, SIAM J. Matrix Anal. Appl. 28, 3, 603. [CrossRef] [MathSciNet] [Google Scholar]
  • Xia J.,Chandrasekaran S.,Gu M.,Li X.S. (2010) Fast algorithms for hierarchically semiseparable matrices, Numer. Linear Algebra Appl. 17, 6, 953-976. [CrossRef] [MathSciNet] [Google Scholar]
  • Ambikasaran S. (2012) HFIGS, URL http://www.stanford.edu/~sivaambi/Hierarchical_matrix_FIGures.html. [Google Scholar]
  • Goreinov S.A.,Tyrtyshnikov E.E.,Zamarashkin N.L. (1997) A theory of pseudoskeleton approximations, Linear Algebra Appl. 261, 1, 1-21. [CrossRef] [Google Scholar]
  • Bebendorf M.,Rjasanow S. (2003) Adaptive low-rank approximation of collocation matrices, Computing 70, 1, 1-24, ISSN 0010-485X. [CrossRef] [MathSciNet] [Google Scholar]
  • Daley T.M.,Solbau R.D.,Ajo-Franklin J.B.,Benson S.M. (2007) Continuous active-source seismic monitoring of formula injection in a brine aquifer, Geophysics 72, 5IFP Energies nouvelles International Conference: Pore2Field – Flows and Mechanics, A57. [CrossRef] [Google Scholar]
  • Pruess K., Oldenburg C., Moridis G. (1999) TOUGH2 user’s guide, version 2.0. [Google Scholar]
  • White J.E. (1975) Computed seismic speeds and attenuation in rocks with partial gas saturation, Geophysics 40, 2, 224-232. [CrossRef] [Google Scholar]
  • Daley T.M., Ajo-Franklin J.B., Doughty. C.M. (2008) Integration of crosswell CASSM (Continuous Active Source Seismic Monitoring) and flow modeling for imaging of a CO2 plume in a brine aquifer, in 2008 SEG Annual Meeting, Las Vegas, 9-14 Nov. [Google Scholar]
  • Doughty C.,Freifeld B.M.,Trautz R.C. (2008) Site characterization for CO2 geologic storage and vice versa : the Frio brine pilot, Texas, USA as a case study, Environ. Geol. 54, 8, 1635-1656. [CrossRef] [Google Scholar]
  • Bradley A.M. (2011) H-matrix and block error tolerances, Arxiv preprint arXiv :1110.2807. [Google Scholar]
  • Balay S., Gropp W.D., McInnes L.C., Smith B.F. (1997) Efficient management of parallelism in object oriented numerical software libraries, in Modern Software Tools in Scientific Computing, Arge E., Bruaset A.M., Langtangen H.P. (eds), Birkhäuser Press, pp. 163-202. [Google Scholar]
  • Balay S., Buschelman K., Eijkhout V., Gropp W.D., Kaushik D., Knepley M.G., McInnes L.C., Smith B.F., Zhang H. (2008) PETSc users manual. Technical Report ANL-95/11 - Revision 3.0.0, Argonne National Laboratory. [Google Scholar]
  • Balay S., Buschelman K., Gropp W.D., Kaushik D., Knepley M.G., McInnes L.C., Smith B.F., Zhang H. (2009) PETSc Web page. http://www.mcs.anl.gov/petsc. [Google Scholar]
  • Pruess K. (2005) ECO2N : A TOUGH2 fluid property module for mixtures of water, NaCl, and CO2, Lawrence Berkeley National Laboratory. [Google Scholar]
  • Zanini A.,Kitanidis P.K. (2009) Geostatistical inversing for large-contrast transmissivity fields, Stoch. Environ. Res. Risk Assess. 23, 5IFP Energies nouvelles International Conference: Pore2Field – Flows and Mechanics, 565-577. [CrossRef] [Google Scholar]
  • Darve E. (2000) The fast multipole method : numerical implementation, Journal of Computational Physics 160, 1, 195-240, Elsevier. [CrossRef] [MathSciNet] [Google Scholar]
  • Darve E. (2000) The fast multipole method I : Error analysis and asymptotic complexity, SIAM Journal on Numerical Analysis 38, 1, 98-128, Society for Industrial and Applied Mathematics. [CrossRef] [MathSciNet] [Google Scholar]
  • Darve E. (1997) Fast-multipole method : a mathematical study, Comptes Rendus de l’Académie des Sciences-Series I-Mathematics 325, 9, 1037-1042, Elsevier. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.