Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 67, Numéro 5, September-October 2012
Page(s) 841 - 855
DOI https://doi.org/10.2516/ogst/2012044
Publié en ligne 14 novembre 2012
  • Evensen G. (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res. 99, C5, 10, 143, 162. [Google Scholar]
  • Lorentzen R.J., Kåre Fjelde K., Frøyen J., Lage A.C.V.M., Nævdal G., Vefring E.H. (2001) Underbalanced and low-head drilling operations : Real time interpretation of measured data and operational support, SPE Annual Technical Conference and Exhibition, 30 September-3 October, SPE Paper 71384. [Google Scholar]
  • Nævdal G., Mannseth T., Vefring E.H. (2002) Near-well reservoir monitoring through ensemble Kalman filter, SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma, 13-17 April, SPE Paper 75235. [Google Scholar]
  • Haugen V., Natvik L.J., Evensen G., Berg A., Flornes K., Nævdal. G. (2006) History matching using the ensemble Kalman filter on a North Sea field case, SPE Annual Technical Conference and Exhibition, San Antonio, Texas, 24-27 Sept. Society of Petroleum Engineers, SPE Paper 102430. [Google Scholar]
  • Evensen G., Hove J., Meisingset H.C., Reiso E., Seim K.S., Espelid Ø. (2007) Using the EnKF for assisted history matching of a North Sea reservoir model, SPE Reservoir Simulation Symposium, Woodlands, Texas, 26-28 February, Society of Petroleum Engineers, SPE Paper 106184. [Google Scholar]
  • Bianco A., Cominelli A., Dovera L., Naevdal G., Vallès B. (2007) History matching and production forecast uncertainty by means of the ensemble Kalman filter : A real field application, SPE Europec/EAGE Annual Conference and Exhibition, London, UK, 11-14 June, Society of Petroleum Engineers, SPE Paper 107161. [Google Scholar]
  • Aanonsen S.I., Naevdal G., Oliver D.S., Reynolds A.C., Vallès B. (2009) The ensemble Kalman filter in reservoir engineering – a review, SPE J. 14, 3, 393-412. [Google Scholar]
  • Seiler A., Aanonsen S.I., Evensen G., Rivenæs J.C. (2010) Structural surface uncertainty modeling and updating using the ensemble Kalman filter, SPE J. 15, 4, 1062-1076. [Google Scholar]
  • Chen Y., Oliver D.S. (2012) Localization of ensemble-based control-setting updates for production optimization, SPE J. 17, 1, 122-136. [Google Scholar]
  • Lorentzen R.J., Flornes K.M., Nævdal G. (2012) History matching channelized reservoirs using the ensemble Kalman filter, SPE J. 17, 1, 137-151. [Google Scholar]
  • Verlaan M., Heemink A.W. (2001) Nonlinearity in data assimilation applications : A practical method for analysis, Mon. Weather Rev. 129, 6, 1578-1589. [CrossRef] [Google Scholar]
  • Bishop C.H., Etherton B.J., Majumdar S.J. (2001) Adaptive sampling with the ensemble transform Kalman filter. Part I : Theoretical aspects, Mont. Weather Rev. 129, 420-436. [Google Scholar]
  • Tippett M.K., Anderson J.L., Bishop C.H., Hamill T.M., Whitaker J.S. (2003) Ensemble square-root filters, Mon. Weather Rev. 131, 7, 1485-1490. [Google Scholar]
  • Vallès B., Nævdal G. (2009) Revisiting Brugge case study using a hierarchical ensemble Kalman filter, International Petroleum Technology Conference, Doha, Qatar, 7-9 Dec., IPTC-14074. [Google Scholar]
  • Anderson J.L. (2007) Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter, Physica D 230, 99-111. [Google Scholar]
  • Stordal A.S., Karlsen H.A., Nævdal G., Skaug H.J., Vallès B. (2011) Bridging the ensemble Kalman filter and particle filters : the adaptive Gaussian mixture filter, Comput. Geosci. 15, 2, 293-305. [Google Scholar]
  • Burgers G., van Leeuwen P.J., Evensen G. (1998) On the analysis scheme in the ensemble Kalman filter, Mon. Weather Rev. 126, 1719-1724. [Google Scholar]
  • Houtekamer P.L., Mitchell L.H. (1998) Data assimilation using an ensemble Kalman filter technique, Mon. Weather Rev. 126, 796-811. [CrossRef] [Google Scholar]
  • Whitaker J.S., Hamil T.M. (2002) Ensemble data assimilation without perturbed observations, Mon. Weather Rev. 130, 1913-1924. [CrossRef] [Google Scholar]
  • Sakov P., Oke P.R. (2008) Implications of the form of the ensemble transformation in the ensemble square root filters, Mon. Weather. Rev. 136, 1042-1053. [CrossRef] [Google Scholar]
  • Julier S.J., Uhlmann J.K. (1997) A new extension to the Kalman filter to nonlinear systems, Proceedings of AeroSens : The 11th International Symposium on Aerospace/Defense Sensing, Simulation and Controls, Orlando, Florida, 20-25 Avril. [Google Scholar]
  • Floris F.J.T., Bush M.D., Cuypers M., Roggero F., Syversveen A.R. (2001) Methods for quantifying the uncertainty of production forecasts : a comparative study, Petrol. Geosci. 7, 87-96. [Google Scholar]
  • PUNQ-S3 (2012) website : http://www3.imperial.ac.uk/earthscienceandengineering/research/perm/punq-s3model. [Google Scholar]
  • Deutsch C.V., Journel A.G. (1998) GSLIB Geostatistical Software Library and User’s Guide, Applied Geostatistics Series, Oxford University Press, second edition. [Google Scholar]
  • Lorentzen R.J., Nævdal G., Vallès B., Berg A.M., Grimstad A.-A. (2005) Analysis of the ensemble Kalman filter for estimation of permeability and porosity in reservoir models, SPE Annual Technical Conference and Exhibition, Dallas, Texas, 9-12 October, SPE Paper 96375. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.