Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 67, Number 5, September-October 2012
Page(s) 823 - 839
DOI https://doi.org/10.2516/ogst/2012024
Published online 06 November 2012
  • Aanonsen S.I., Aavatsmark I., Barkve T., Cominelli A., Gonard R., Gosselin O., Kolasinski M., Rene H. (2003) Effect of scale dependent data correlations in an integrated history matching loop combining production data and 4D seismic data, SPE 79665, SPE Reservoir Simulation Symposium, Houston, TX, USA, 3-5 Feb. [Google Scholar]
  • Aanonsen S.I., Eydinov D. (2006) A multiscale method for distributed parameter estimation with application to reservoir history matching, Comput. Geosci. 10, 97-117. [CrossRef] [Google Scholar]
  • Arts R., Eiken O., Chadwick A., Zweigel P., van der Meer L., Zinszner B. (2002) Monitoring of CO2 injected at Sleipner using time lapse seismic data, in Gale J. and Kaya Y. (eds), Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies (GHGT6), Kyoto, Japan, 1-4 Oct., pp. 347-352. [Google Scholar]
  • Aziz K., Settari A. (1979) Petroleum reservoir simulation, Applied Science Publishers. [Google Scholar]
  • Behrens R., Condon P., Haworth W., Bergeron M., Wang Z., Ecker C. (2002) 4D seismic monitoring of water influx at Bay Marchand : the practical use of 4D in an imperfect world, SPE Reserv. Evalu. Eng. 5, 5IFP Energies nouvelles International Conference: Pore2Field – Flows and Mechanics, 410-420, SPE 79961. [Google Scholar]
  • Benson R.D., Davis T.L. (2000) Time-lapse seismic monitoring and dynamic reservoir characterization, Central Vacuum unit, Lea County, New Mexico, SPE Reserv. Evalu. Eng. 3, 1, 88-97. [Google Scholar]
  • Caers J. (2003) Geostatistical history matching under training-image based geological constraints, SPE J. 8, 3, 218-226. [Google Scholar]
  • Carrera J., Alcolea A., Medina A., Hidalgo J., Slooten L.J. (2005) Inverse problem in hydrogeology, Hydrogeol. J. 13, 206-222. [CrossRef] [Google Scholar]
  • Chavent G.M., Dupuy M., Lemonnier P. (1975) History matching by use of optimal control theory, SPE J. 15, 1, 74-86. [Google Scholar]
  • Chilès J.P., Delfiner P. (1999) Geostatistics : Modeling Spatial Uncertainty, Wiley, New York, 695 p. Da Veiga S., Gervais V. (2011) Local adaptive parameterization for the history matching of 3D seismic data, Comput. Geosci. 16, 2, 483. [Google Scholar]
  • Delhomme J.P. (1978) Kriging in the hydrosciences, Adv. Water Resour. 1, 5IFP Energies nouvelles International Conference: Pore2Field – Flows and Mechanics, 251-266. [CrossRef] [Google Scholar]
  • de Marsily G. (1978) De l’identification des systèmes hydrologiques, Thèse, Univ. Paris VI. [Google Scholar]
  • Eastwood J., Lebel J.P., Dilay A., Blackeslee S. (1994) Seismic monitoring of steam-based recovery of bitumen, Lead. Edge 4, 242-251. [CrossRef] [Google Scholar]
  • Efendiev Y., Ginting G., Hou T., Ewing R. (2006) Accurate multiscale finite element methods for two-phase flow simulations, J. Comput. Phys. 220, 1, 155-174. [CrossRef] [Google Scholar]
  • Floris F.J.T., Bush M.D., Cuypers M., Roggero F., Syversveen A.R. (2001) Methods for quantifying the uncertainty of production forecasts : a comparative study, Petrol. Geosci. 7, S87-S96. [CrossRef] [Google Scholar]
  • Gautier Y., Blunt M.J., Christie M. (1999) Nested gridding and streamline-based simulation for fast réservoir performance prediction, Comput. Geosci. 3, 295-320. [CrossRef] [Google Scholar]
  • Gassmann F. (1951) Uber die elastizitat poroser Medien, Vier. Der Natur Gesellschaft 96, 1-23. [Google Scholar]
  • Gervais V., Gautier Y., Le Ravalec M., Roggero F. (2007) History matching using local gradual deformation, EUROPEC/EAGE Conference and Exhibition, London, UK, 11-14 June, SPE 107173. [Google Scholar]
  • Gervais V., Roggero F. (2010) Integration of saturation data in a history matching process based on adaptive local parameterization, J. Petrol. Sci. Eng. 73, 1-2, 86-98. [CrossRef] [Google Scholar]
  • Gervais V., Roggero F., Feraille M., Le Ravalec M., Seiler A. (2010) Joint history matching of production and 4D-seismic related data for a North Sea field case, SPE Annual Technical Conference and Exhibition, Florence, Italy, 19-22 Sept, SPE 135116. [Google Scholar]
  • Goldberg D.E., Kuo C.H. (1987) Genetic algorithms in pipeline optimization, J. Comput. Civ. Eng. ASCE 1, 2, 128-141. [CrossRef] [Google Scholar]
  • Guderian K., Kleemeyer M., Kjeldstad A., Pettersson S.E., Rehling J. (2003) Draugen field : Successful reservoir management using 4D seismic, 65th EAGE Conference and Exhibition, Stavanger, Norway, 2-5 June, Expanded Abstract, A01. [Google Scholar]
  • Henriette A., Jacquin C., Adler P. (1989) The effective permeability of heterogeneous porous media, Physico-Chem. Hydrodyn. 11, 1, 63-80. [Google Scholar]
  • Hoffman B., Caers J. (2005) Regional probability perturbations for history matching, J. Petrol. Sci. Eng. 46, 53-71. [CrossRef] [Google Scholar]
  • Holt R.M. (1997) Conceptual model for transport processes in the Culebra Dolomite Member, Rustler Formation, SAND97-0194, Sandia National Laboratories, Albuquerque, NM, USA. [Google Scholar]
  • Hu L.-Y. (2000) Gradual deformation and iterative calibration of Gaussian-related stochastic models, Math. Geol. 32, 1, 87-108. [CrossRef] [MathSciNet] [Google Scholar]
  • Jenny P., Lee S.H., Tchelepi H.A. (2006) Adaptive fully implicit multi-scale finite-volume method for multi-phase flow and transport in heterogeneous porous media, J. Comput. Phys. 217, 2, 627-641. [CrossRef] [Google Scholar]
  • Journel A.G., Gundeso R., Gringarten E., Yao T. (1998) Stochastic modelling of a fluvial reservoir : a comparative review of algorithms, J. Petrol. Sci. Eng. 21, 95-121. [CrossRef] [Google Scholar]
  • Kiefer J., Wolfowitz J. (1952) Stochastic estimation of the maximum of a regression function, Ann. Math. Stat. 22, 3, 462-466. [CrossRef] [Google Scholar]
  • LeRavalec-Dupin M. (2010) Pilot block method methodology to calibrate stochastic permeability fields to dynamic data, Math. Geosci. 42, 2, 165-185. [CrossRef] [Google Scholar]
  • Le Ravalec-Dupin M., Da Veiga S. (2011) Cosimulation as a perturbation method for calibrating porosity and permeability fields to dynamic data, Comput. Geosci. 37, 9, 1400-1412. [CrossRef] [Google Scholar]
  • Le Ravalec-Dupin M., Fenwick D. (2002) A combined geostatistical and streamline-based history matching procedure, SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 29 Sept.-2 Oct, SPE 77378. [Google Scholar]
  • Le Ravalec-Dupin M., Tillier E., Da Veiga S., Enchery G., Gervais V. (2012) Advanced integrated workflows for incorporating both production and 4D seismic-related data into reservoir models, Oil Gas Sci. Technol. 67, 2, 207-220. [CrossRef] [EDP Sciences] [Google Scholar]
  • Matheron G. (1963) Principles of geostatistics, Econ. Geol. 58, 1246-1266. [CrossRef] [Google Scholar]
  • Matheron G. (1965) Les variables régionalisées et leur estimation, Masson, Paris, 185 p. [Google Scholar]
  • Mavko G., Mukerji T., Dvorkin J. (1998) The Rock Physics Handbook, Cambridge University Press, ISBN 0-521-54344-4. [Google Scholar]
  • Mindlin R.D. (1949) Compliance of elastic bodies in contact, J. Appl. Mech. 16, 259-268. [MathSciNet] [Google Scholar]
  • Nelder J.A., Mead, R.A. (1965) A simplex method for function minimization, Comput. J. 7, 308-313. [CrossRef] [Google Scholar]
  • Neuman S.P. (1973) Calibration of distributed parameter groundwater flow models viewed as a multi-objective decision process under uncertainty, Water Resour. Res. 9, 4, 1006-1021. [CrossRef] [Google Scholar]
  • Oliver D.S., Chen Y. (2011) Recent progress on reservoir history matching : a review, Comput. Geosci. 15, 185-221. [CrossRef] [Google Scholar]
  • Pickup G.E., Hern C.Y. (2002) The development of appropriate upscaling procedures, Transport Porous Media 46, 119-138. [CrossRef] [Google Scholar]
  • RamaRao B.S., LaVenue A.M., Marsily G. de, Marietta M.G. (1995) Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields. Part 1. Theory and computational experiments, Water Resour. Res. 31, 3, 475-493. [CrossRef] [Google Scholar]
  • Roggero F., Lerat O., Ding D.Y., Berthet P., Bordenave C., Lefeuvre F., Perfetti P. (2012) History matching of production history and 4D seismic data : Application to the Girassol field, offshore [Google Scholar]
  • Angola, Oil Gas Science Technol. 67, 2, 237-262. [Google Scholar]
  • Roth C., Chilès J.P., de Fouquet C. (1998) Combining geostatistics and flow simulators to identify transmissivity, Adv. Water Resour. 21, 555-565. [CrossRef] [Google Scholar]
  • Sun N.-Z. (1995) Inverse problems in groundwater modeling, Kluwer Academic Publishers, Dordrecht, The Netherlands. [Google Scholar]
  • Tarantola A. (1987) Inverse problem theory – Methods for data fitting and model parameter estimation, Elsevier Science Publishers, Amsterdam, The Netherlands. [Google Scholar]
  • Tillier E., Le Ravalec M., Da Veiga S. (2012) Simultaneous inversion of production data and seismic attributes : Application to a SAGD produced field, Oil Gas Sci. Technol. 67, 2, 289-301. [CrossRef] [EDP Sciences] [Google Scholar]
  • Tran T.T., Wen X.-H., Behrens R.A. (1999) Efficient conditioning of 3D fine-scale reservoir model to multiphase production data using streamline-based coarse-scale inversion and geostatistical downscaling, SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 3-6 Oct., SPE 56518. [Google Scholar]
  • Weissmann G.S., Fogg G.E. (1999) Multi-scale alluvial fan heterogeneity with transition probability geostatistics in a sequence stratigraphic Framework, J. Hydrol. 226, 1-2, 48-65. [CrossRef] [Google Scholar]
  • Yudin D.B. (1966) Quantitative analysis of complex systems, part II. Engineering Cybernetics 1, 1-23. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.