Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 67, Number 4, July-August 2012
Page(s) 647 - 660
Published online 09 August 2012
  • Heywood J.B. (1988) Internal Combustion Engine Fundamentals, McGraw Hill, New York. [Google Scholar]
  • Bayraktar H., Durgun O. (2003) Mathematical Modeling of Spark-Ignition Engine Cycles, Energy Sources 25, 651-666. [CrossRef] [Google Scholar]
  • Erduranlı P., Koca A., Sekmen Y. (2005) Performance Calculation of a Spark Ignition Engine According to the Ideal Air-Fuel Cycle Analysis, Gazi University J. Sci. 18, 1, 103-114. [Google Scholar]
  • Chow A., Wyszynski M.L. (1999) Thermodynamic Modelling of Complete Engine Systems-A Review, Proc. IMechE Part D : J. Automobile Engineering 213, 403-415. [CrossRef] [Google Scholar]
  • Andreassi L., Cordiner S., Rocco V. (2003) Modeling the Early Stage of Spark Ignition Engine Combustion Using the KIVA-3V Code Incorporating an Ignition Model, Int. J. Engine Res. 4, 3, 179-192. [CrossRef] [Google Scholar]
  • Caton J.A. (2002) Illustration of the Use of an Instructional Version of a Thermodynamic Cycle Simulation for a Commercial Automotive Spark-Ignition Engine, Int. J. Mech. Eng. Educ. 30, 4, 283-297. [CrossRef] [Google Scholar]
  • Rakopoulos C.D., Giakoumis E.G. (2006) Second-Law Analyses Applied to Internal Combustion Engines Operation, Progr. Energ. Combust. Sci. 32, 2-47. [CrossRef] [Google Scholar]
  • Rakopoulos C.D., Giakoumis E.G. (2005) The Influence of Cylinder Wall Temperature Profile on the Second-Law Diesel Engine Transient Response, Appl. Therm. Eng. 25, 1779-1795. [CrossRef] [Google Scholar]
  • Moran M.J., Shapiro H.N. (2000) Fundamentals of Engineering Thermodynamics, John Wiley & Sons, New York. [Google Scholar]
  • Cengel Y.A., Boles M.A. (1994) Thermodynamics, An Engineering Approach, McGraw Hill, New York. [Google Scholar]
  • Bejan A. (2002) Fundamentals of Exergy Analysis, Entropy Generation Minimization, and the Generation of Flow Architecture, Int. J. Energy Res. 26, 545-565. [Google Scholar]
  • Szargut J. (2005) Exergy Analysis, Research in Progress Thermodynamics 3, 7, 31-3. [Google Scholar]
  • Traupel W. (1957) Reciprocating Engine and Turbine in Internal Combustion Engineering, Proceedings of the International Congress of Combustion Engines (CIMAC), Zurich, Switzerland. [Google Scholar]
  • Patterson D.J. (1962) A Comprehensive Cycle Analysis and Digital Computer Simulation for Spark-Ignited Engines, PhD Thesis, Michigan University. [Google Scholar]
  • Primus R.J., Hoag K.L., Flynn P.F., Brands M.C. (1984) An Appraisal of Advanced Engine Concepts Using Second Law Techniques, SAE Technical Papers 841287, 73-87. [Google Scholar]
  • Alkidas A.C. (1988) The Application of Availability and Energy Balances to a Diesel Engine, J. Eng. Gas Turbine. Power 110, 462-469. [CrossRef] [Google Scholar]
  • Lior N., Rudy G.J. (1988) Second-Law Analysis of an Ideal Otto Cycle, Energy Convers. Manage. 28, 4, 327-334. [CrossRef] [Google Scholar]
  • Shapiro H.N., Van Gerpen J.H. (1989) Two Zone Combustion Models for Second Law Analysis of Internal Combustion Engines, SAE Technical Papers 890823, 1408-1422. [Google Scholar]
  • Kumar S.V. (1989) Exergy as a Second Law Analysis Parameter in Diesel Engine Cycle Simulation, PhD Thesis, University of Illinois. [Google Scholar]
  • Gallo W.L.R., Milanez L.F. (1992) Exergetic Analysis of Ethanol and Gasoline Fueled Engines, SAE Technical Papers 920809, 907-915. [Google Scholar]
  • Rakopoulos C.D. (1993) Evaluation of a Spark Ignition Engine Cycle Using First and Second Law Analysis Techniques, Energy Convers. Manage. 34, 12, 1299-1314. [Google Scholar]
  • Alasfour F.N. (1997) Butanol-A Single-Cylinder Engine Study : Availability Analysis, Appl. Therm. Eng. 17, 6, 537-549. [Google Scholar]
  • Caton J.A. (2000) Operation Characteristics of a Spark-Ignition Engine Using the Second Law of Thermodynamics : Effects of Speed and Load, SAE World Congress, Detroit, MI. [Google Scholar]
  • Kopac M., Kokturk L. (2005) Determination of Optimum Speed of an Internal Combustion Engine by Exergy Analysis, Int. J. Exergy 2, 1, 40-54. [CrossRef] [Google Scholar]
  • Sayin C., Hosoz M., Canakci M., Kilicaslan I. (2006) Energy and Exergy Analyses of a Gasoline Engine, Int. J. Energy Res. 31, 3, 259-273. [CrossRef] [Google Scholar]
  • Ferguson C.R. (1985) Internal Combustion Engine Applied Thermosciences, John Wiley & Sons, New York. [Google Scholar]
  • Sezer I. (2008) Application of Exergy Analysis to Spark Ignition Engine Cycle, PhD Thesis, Karadeniz Technical University. [Google Scholar]
  • Ferguson C.R., Green R.M., Lucht R.P. (1987) Unburned Gas Temperatures in Internal Combustion Engine II : Heat Release Computations, Combust. Sci. Technol. 55, 63-81. [CrossRef] [Google Scholar]
  • Bayraktar H., Durgun O. (2004) Development of an Empirical Correlation for Combustion Durations in Spark Ignition Engines, Energy Convers. Manage. 45, 1419-1431. [CrossRef] [Google Scholar]
  • Van Gerpen J.H., Shapiro H.N. (1990) Second Law Analysis of Diesel Engine Combustion, J. Eng. Gas Turbine. Power 112, 129-37. [CrossRef] [Google Scholar]
  • Zhang S. (2002) The Second Law Analysis of a Spark Ignition Engine Fueled with Compressed Natural Gas, MS Thesis, University of Windsor. [Google Scholar]
  • Kotas T.J. (1995) The Exergy Method of Thermal Plant Analysis, Krieger Publishing, Malabar. [Google Scholar]
  • Chen C., Veshagh A. (1992) A Refinement of Flame Propagation Combustion Model for Spark-Ignition Engines, SAE Technical Papers 920679, 1-22. [Google Scholar]
  • Kahraman N., Ceper B., Akansu S.O., Aydin K. (2009) Investigation of Combustion Characteristics and Emissions in a Spark-Ignition Engine Fuelled with Natural Gas-Hydrogen Blends, Int. J. Hydrogen Energy 34, 1026-1034. [CrossRef] [Google Scholar]
  • Sayin C., Hosoz M., Canakci M., Kilicaslan I. (2007) Energy and Exergy Analyses of a Gasoline Engine, Int. J. Energy Res. 31, 259-273. [Google Scholar]
  • Caton J.A. (2000) On the Destruction of Availability due to Combustion Processes - with Specific Application to Internal- Combustion Engines, Energy 25, 1097-1117. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.