Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 67, Number 4, July-August 2012
Page(s) 647 - 660
DOI https://doi.org/10.2516/ogst/2012002
Published online 09 August 2012
  • Heywood J.B. (1988) Internal Combustion Engine Fundamentals, McGraw Hill, New York.
  • Bayraktar H., Durgun O. (2003) Mathematical Modeling of Spark-Ignition Engine Cycles, Energy Sources 25, 651-666. [CrossRef]
  • Erduranlı P., Koca A., Sekmen Y. (2005) Performance Calculation of a Spark Ignition Engine According to the Ideal Air-Fuel Cycle Analysis, Gazi University J. Sci. 18, 1, 103-114.
  • Chow A., Wyszynski M.L. (1999) Thermodynamic Modelling of Complete Engine Systems-A Review, Proc. IMechE Part D : J. Automobile Engineering 213, 403-415. [CrossRef]
  • Andreassi L., Cordiner S., Rocco V. (2003) Modeling the Early Stage of Spark Ignition Engine Combustion Using the KIVA-3V Code Incorporating an Ignition Model, Int. J. Engine Res. 4, 3, 179-192. [CrossRef]
  • Caton J.A. (2002) Illustration of the Use of an Instructional Version of a Thermodynamic Cycle Simulation for a Commercial Automotive Spark-Ignition Engine, Int. J. Mech. Eng. Educ. 30, 4, 283-297. [CrossRef]
  • Rakopoulos C.D., Giakoumis E.G. (2006) Second-Law Analyses Applied to Internal Combustion Engines Operation, Progr. Energ. Combust. Sci. 32, 2-47. [CrossRef]
  • Rakopoulos C.D., Giakoumis E.G. (2005) The Influence of Cylinder Wall Temperature Profile on the Second-Law Diesel Engine Transient Response, Appl. Therm. Eng. 25, 1779-1795. [CrossRef]
  • Moran M.J., Shapiro H.N. (2000) Fundamentals of Engineering Thermodynamics, John Wiley & Sons, New York.
  • Cengel Y.A., Boles M.A. (1994) Thermodynamics, An Engineering Approach, McGraw Hill, New York.
  • Bejan A. (2002) Fundamentals of Exergy Analysis, Entropy Generation Minimization, and the Generation of Flow Architecture, Int. J. Energy Res. 26, 545-565.
  • Szargut J. (2005) Exergy Analysis, Research in Progress Thermodynamics 3, 7, 31-3.
  • Traupel W. (1957) Reciprocating Engine and Turbine in Internal Combustion Engineering, Proceedings of the International Congress of Combustion Engines (CIMAC), Zurich, Switzerland.
  • Patterson D.J. (1962) A Comprehensive Cycle Analysis and Digital Computer Simulation for Spark-Ignited Engines, PhD Thesis, Michigan University.
  • Primus R.J., Hoag K.L., Flynn P.F., Brands M.C. (1984) An Appraisal of Advanced Engine Concepts Using Second Law Techniques, SAE Technical Papers 841287, 73-87.
  • Alkidas A.C. (1988) The Application of Availability and Energy Balances to a Diesel Engine, J. Eng. Gas Turbine. Power 110, 462-469. [CrossRef]
  • Lior N., Rudy G.J. (1988) Second-Law Analysis of an Ideal Otto Cycle, Energy Convers. Manage. 28, 4, 327-334. [CrossRef]
  • Shapiro H.N., Van Gerpen J.H. (1989) Two Zone Combustion Models for Second Law Analysis of Internal Combustion Engines, SAE Technical Papers 890823, 1408-1422.
  • Kumar S.V. (1989) Exergy as a Second Law Analysis Parameter in Diesel Engine Cycle Simulation, PhD Thesis, University of Illinois.
  • Gallo W.L.R., Milanez L.F. (1992) Exergetic Analysis of Ethanol and Gasoline Fueled Engines, SAE Technical Papers 920809, 907-915.
  • Rakopoulos C.D. (1993) Evaluation of a Spark Ignition Engine Cycle Using First and Second Law Analysis Techniques, Energy Convers. Manage. 34, 12, 1299-1314. [CrossRef]
  • Alasfour F.N. (1997) Butanol-A Single-Cylinder Engine Study : Availability Analysis, Appl. Therm. Eng. 17, 6, 537-549. [CrossRef]
  • Caton J.A. (2000) Operation Characteristics of a Spark-Ignition Engine Using the Second Law of Thermodynamics : Effects of Speed and Load, SAE World Congress, Detroit, MI.
  • Kopac M., Kokturk L. (2005) Determination of Optimum Speed of an Internal Combustion Engine by Exergy Analysis, Int. J. Exergy 2, 1, 40-54. [CrossRef]
  • Sayin C., Hosoz M., Canakci M., Kilicaslan I. (2006) Energy and Exergy Analyses of a Gasoline Engine, Int. J. Energy Res. 31, 3, 259-273. [CrossRef]
  • Ferguson C.R. (1985) Internal Combustion Engine Applied Thermosciences, John Wiley & Sons, New York.
  • Sezer I. (2008) Application of Exergy Analysis to Spark Ignition Engine Cycle, PhD Thesis, Karadeniz Technical University.
  • Ferguson C.R., Green R.M., Lucht R.P. (1987) Unburned Gas Temperatures in Internal Combustion Engine II : Heat Release Computations, Combust. Sci. Technol. 55, 63-81. [CrossRef]
  • Bayraktar H., Durgun O. (2004) Development of an Empirical Correlation for Combustion Durations in Spark Ignition Engines, Energy Convers. Manage. 45, 1419-1431. [CrossRef]
  • Van Gerpen J.H., Shapiro H.N. (1990) Second Law Analysis of Diesel Engine Combustion, J. Eng. Gas Turbine. Power 112, 129-37. [CrossRef]
  • Zhang S. (2002) The Second Law Analysis of a Spark Ignition Engine Fueled with Compressed Natural Gas, MS Thesis, University of Windsor.
  • Kotas T.J. (1995) The Exergy Method of Thermal Plant Analysis, Krieger Publishing, Malabar.
  • Chen C., Veshagh A. (1992) A Refinement of Flame Propagation Combustion Model for Spark-Ignition Engines, SAE Technical Papers 920679, 1-22.
  • Kahraman N., Ceper B., Akansu S.O., Aydin K. (2009) Investigation of Combustion Characteristics and Emissions in a Spark-Ignition Engine Fuelled with Natural Gas-Hydrogen Blends, Int. J. Hydrogen Energy 34, 1026-1034. [CrossRef]
  • Sayin C., Hosoz M., Canakci M., Kilicaslan I. (2007) Energy and Exergy Analyses of a Gasoline Engine, Int. J. Energy Res. 31, 259-273. [CrossRef]
  • Caton J.A. (2000) On the Destruction of Availability due to Combustion Processes - with Specific Application to Internal- Combustion Engines, Energy 25, 1097-1117. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.