Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 67, Numéro 4, July-August 2012
Page(s) 647 - 660
DOI https://doi.org/10.2516/ogst/2012002
Publié en ligne 9 août 2012
  • Heywood J.B. (1988) Internal Combustion Engine Fundamentals, McGraw Hill, New York. [Google Scholar]
  • Bayraktar H., Durgun O. (2003) Mathematical Modeling of Spark-Ignition Engine Cycles, Energy Sources 25, 651-666. [CrossRef] [Google Scholar]
  • Erduranlı P., Koca A., Sekmen Y. (2005) Performance Calculation of a Spark Ignition Engine According to the Ideal Air-Fuel Cycle Analysis, Gazi University J. Sci. 18, 1, 103-114. [Google Scholar]
  • Chow A., Wyszynski M.L. (1999) Thermodynamic Modelling of Complete Engine Systems-A Review, Proc. IMechE Part D : J. Automobile Engineering 213, 403-415. [CrossRef] [Google Scholar]
  • Andreassi L., Cordiner S., Rocco V. (2003) Modeling the Early Stage of Spark Ignition Engine Combustion Using the KIVA-3V Code Incorporating an Ignition Model, Int. J. Engine Res. 4, 3, 179-192. [CrossRef] [Google Scholar]
  • Caton J.A. (2002) Illustration of the Use of an Instructional Version of a Thermodynamic Cycle Simulation for a Commercial Automotive Spark-Ignition Engine, Int. J. Mech. Eng. Educ. 30, 4, 283-297. [CrossRef] [Google Scholar]
  • Rakopoulos C.D., Giakoumis E.G. (2006) Second-Law Analyses Applied to Internal Combustion Engines Operation, Progr. Energ. Combust. Sci. 32, 2-47. [CrossRef] [Google Scholar]
  • Rakopoulos C.D., Giakoumis E.G. (2005) The Influence of Cylinder Wall Temperature Profile on the Second-Law Diesel Engine Transient Response, Appl. Therm. Eng. 25, 1779-1795. [CrossRef] [Google Scholar]
  • Moran M.J., Shapiro H.N. (2000) Fundamentals of Engineering Thermodynamics, John Wiley & Sons, New York. [Google Scholar]
  • Cengel Y.A., Boles M.A. (1994) Thermodynamics, An Engineering Approach, McGraw Hill, New York. [Google Scholar]
  • Bejan A. (2002) Fundamentals of Exergy Analysis, Entropy Generation Minimization, and the Generation of Flow Architecture, Int. J. Energy Res. 26, 545-565. [Google Scholar]
  • Szargut J. (2005) Exergy Analysis, Research in Progress Thermodynamics 3, 7, 31-3. [Google Scholar]
  • Traupel W. (1957) Reciprocating Engine and Turbine in Internal Combustion Engineering, Proceedings of the International Congress of Combustion Engines (CIMAC), Zurich, Switzerland. [Google Scholar]
  • Patterson D.J. (1962) A Comprehensive Cycle Analysis and Digital Computer Simulation for Spark-Ignited Engines, PhD Thesis, Michigan University. [Google Scholar]
  • Primus R.J., Hoag K.L., Flynn P.F., Brands M.C. (1984) An Appraisal of Advanced Engine Concepts Using Second Law Techniques, SAE Technical Papers 841287, 73-87. [Google Scholar]
  • Alkidas A.C. (1988) The Application of Availability and Energy Balances to a Diesel Engine, J. Eng. Gas Turbine. Power 110, 462-469. [CrossRef] [Google Scholar]
  • Lior N., Rudy G.J. (1988) Second-Law Analysis of an Ideal Otto Cycle, Energy Convers. Manage. 28, 4, 327-334. [CrossRef] [Google Scholar]
  • Shapiro H.N., Van Gerpen J.H. (1989) Two Zone Combustion Models for Second Law Analysis of Internal Combustion Engines, SAE Technical Papers 890823, 1408-1422. [Google Scholar]
  • Kumar S.V. (1989) Exergy as a Second Law Analysis Parameter in Diesel Engine Cycle Simulation, PhD Thesis, University of Illinois. [Google Scholar]
  • Gallo W.L.R., Milanez L.F. (1992) Exergetic Analysis of Ethanol and Gasoline Fueled Engines, SAE Technical Papers 920809, 907-915. [Google Scholar]
  • Rakopoulos C.D. (1993) Evaluation of a Spark Ignition Engine Cycle Using First and Second Law Analysis Techniques, Energy Convers. Manage. 34, 12, 1299-1314. [CrossRef] [Google Scholar]
  • Alasfour F.N. (1997) Butanol-A Single-Cylinder Engine Study : Availability Analysis, Appl. Therm. Eng. 17, 6, 537-549. [CrossRef] [Google Scholar]
  • Caton J.A. (2000) Operation Characteristics of a Spark-Ignition Engine Using the Second Law of Thermodynamics : Effects of Speed and Load, SAE World Congress, Detroit, MI. [Google Scholar]
  • Kopac M., Kokturk L. (2005) Determination of Optimum Speed of an Internal Combustion Engine by Exergy Analysis, Int. J. Exergy 2, 1, 40-54. [CrossRef] [Google Scholar]
  • Sayin C., Hosoz M., Canakci M., Kilicaslan I. (2006) Energy and Exergy Analyses of a Gasoline Engine, Int. J. Energy Res. 31, 3, 259-273. [CrossRef] [Google Scholar]
  • Ferguson C.R. (1985) Internal Combustion Engine Applied Thermosciences, John Wiley & Sons, New York. [Google Scholar]
  • Sezer I. (2008) Application of Exergy Analysis to Spark Ignition Engine Cycle, PhD Thesis, Karadeniz Technical University. [Google Scholar]
  • Ferguson C.R., Green R.M., Lucht R.P. (1987) Unburned Gas Temperatures in Internal Combustion Engine II : Heat Release Computations, Combust. Sci. Technol. 55, 63-81. [CrossRef] [Google Scholar]
  • Bayraktar H., Durgun O. (2004) Development of an Empirical Correlation for Combustion Durations in Spark Ignition Engines, Energy Convers. Manage. 45, 1419-1431. [CrossRef] [Google Scholar]
  • Van Gerpen J.H., Shapiro H.N. (1990) Second Law Analysis of Diesel Engine Combustion, J. Eng. Gas Turbine. Power 112, 129-37. [CrossRef] [Google Scholar]
  • Zhang S. (2002) The Second Law Analysis of a Spark Ignition Engine Fueled with Compressed Natural Gas, MS Thesis, University of Windsor. [Google Scholar]
  • Kotas T.J. (1995) The Exergy Method of Thermal Plant Analysis, Krieger Publishing, Malabar. [Google Scholar]
  • Chen C., Veshagh A. (1992) A Refinement of Flame Propagation Combustion Model for Spark-Ignition Engines, SAE Technical Papers 920679, 1-22. [Google Scholar]
  • Kahraman N., Ceper B., Akansu S.O., Aydin K. (2009) Investigation of Combustion Characteristics and Emissions in a Spark-Ignition Engine Fuelled with Natural Gas-Hydrogen Blends, Int. J. Hydrogen Energy 34, 1026-1034. [CrossRef] [Google Scholar]
  • Sayin C., Hosoz M., Canakci M., Kilicaslan I. (2007) Energy and Exergy Analyses of a Gasoline Engine, Int. J. Energy Res. 31, 259-273. [CrossRef] [Google Scholar]
  • Caton J.A. (2000) On the Destruction of Availability due to Combustion Processes - with Specific Application to Internal- Combustion Engines, Energy 25, 1097-1117. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.