IFP Energies nouvelles International Conference: Deep Saline Aquifers for Geological Storage of CO2 and Energy
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 66, Number 1, January-February 2011
IFP Energies nouvelles International Conference: Deep Saline Aquifers for Geological Storage of CO2 and Energy
Page(s) 105 - 118
DOI https://doi.org/10.2516/ogst/2010032
Published online 24 February 2011
  • Metz B., Davidson O., de Cominck H.C., Loos M.,Meyer L.A. (eds) (2005) IPCC special report on carbon dioxide capture and storage, Prepared by Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Bachu S., Bennion B. (2008) Effects of in-situ conditions on relative permeability characteristics of CO2-brine systems, Environ. Geol. 54, 1707-1722. [CrossRef]
  • Bergman P.D., Winter E.M. (1995) Disposal of Carbon-dioxide in aquifers in the US, Energ. Convers. Manage. 36, 6-9, 523-526.
  • Birkholzer J.T., Zhou Q., Tsang C.-F. (2008) Large-scale impact of CO2 storage in deep saline aquifers: A sensitivity study on pressure response in stratified systems, Int. J. Greenhouse Gas Control 3, 2, 181-194. [CrossRef]
  • Gale J. (2004) Geological storage of CO2: What do we know, where are the gaps and what more needs to be done? Energy 29, 1329-1338. [CrossRef]
  • Javadpour F. (2009) CO2 Injection in geological formations: Determining macroscale coefficients from pore scale processes, Transport. Porous Med. 79, 1, 87-105. [CrossRef]
  • Nordbotten J.M., Celia M.A., Bachu S. (2005) Injection and storage of CO2 in deep saline aquifers: Analytical solution for CO2 plume evolution during injection, Transport. Porous Med. 58, 339-360. [CrossRef]
  • Rutqvist J., Tsang C.-F. (2002) A study of caprock hydromechanical changes associated with CO2 injection into a brine formation, Environ. Geol. 42, 296-305. [CrossRef]
  • Hawkes C.D., McLella P.J., Bachu S. (2005) Geomechanical factors affecting geological storage of CO2 in depleted oil and gas reservoirs, J. Can. Petrol. Technol. 44, 10, 52-61.
  • García J. (2003) Fluid dynamics of carbon dioxide disposal into saline aquifers, PhD Thesis, Lawrence Berkeley National Laboratory, University of California.
  • Lindeberg E. (1997) Escape of CO2 from aquifers, Energ. Convers. Manage. 38, 235-240. [CrossRef]
  • Pruess K., García J. (2002) Multiphase flow dynamics during CO2 injection into saline aquifers, Environ. Geol. 42, 282-295. [CrossRef]
  • Basbug B., Gumrah F., Oz B. (2007) Simulating the effects of deep saline aquifer properties for CO2 sequestration, J. Can. Petrol. Technol. 46, 30-38.
  • Doughty C., Pruess K. (2004) Modeling supercritical carbon dioxide injection in heterogeneous porous media, Vadose Zone J. 3, 837-847. [CrossRef]
  • Ennis-King J., Paterson L. (2005) Role of convective mixing in the long-term storage of carbon dioxide in deep saline formations, SPE J. 10, 349-356.
  • Flett M., Gurton R., Weir G. (2007) Heterogeneous saline formations for carbon dioxide disposal: Impact of varying heterogeneity on containment and trapping, J. Petrol. Sci. Eng. 57, 106-118. [CrossRef]
  • Ghanbari S., Al-Zaabi Y., Pickup G.E., Mackay E., Gozalpour F., Todd A.C. (2006) Simulation of CO2 storage in saline aquifers, Chem. Eng. Res. Des. 84, 9, 764-775. [CrossRef]
  • Imaseki Y., Ohsumi T., Tomoda T., Uno M., Ohkuma H. (2005) Numerical simulation of the injection and migration behaviour of carbon dioxide, in Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies, Vancouver, pp. 2181-2184.
  • Le Gallo Y., Trenty L., Michel A., Vidal-Gilbert S., Parra T., Jeannin L. (2006) Long-term flow simulation of CO2 storage in saline aquifers, in Proceedings of the 8th International Conference on Greenhouse Gas Control Technologies, Trondheim.
  • Pruess K., Xu T.F., Apps J., García J. (2003) Numerical modeling of aquifer disposal of CO2, SPE J. 8, 1, 49-60.
  • Nordbotten J.M., Celia M.A. (2006) Similarity solutions for fluid injection into confined aquifers, J. Fluid Mech. 561, 307-327. [CrossRef] [MathSciNet]
  • Nordbotten J., Celia M., Bachu S., Dahle H. (2005) Semianalytical solution for CO2 leakage through an abandoned well, Environ. Sci. Technol. 39, 2, 602-611. [CrossRef] [PubMed]
  • Saripalli P., McGrail P. (2002) Semi-analytical approaches to modeling deep well injection of CO2 for geological sequestration, Energ. Convers. Manage. 43, 2, 185-198. [CrossRef]
  • Dentz M., Tartakovsky D.M. (2008) Abrupt-interface solution for carbon dioxide injection into porous media, Transport. Porous Med. 51, 7, 1-13.
  • Nordbotten J., Celia M., Bachu S. (2004) Analytical solutions for leakage rates through abandoned wells, Water Resour. Res. 40, 4, W04204. [CrossRef]
  • Riaz A., Hesse M., Tchelepi H.A., Orr F.M. Jr. (2006) Onset of convection in a gravitationally unstable diffusive boundary layer in porous media, J. Fluid Mech. 548, 87-111. [CrossRef] [MathSciNet]
  • Vidal-Gilbert S., Nauroy J.-F., Brosse E. (2009) 3D geomechanical modelling for CO2 geologic storage in the Dogger carbonates of the Paris Basin, Int. J. Greenhouse Gas Control 3, 3, 288-299. [CrossRef]
  • Lichtner P.C. (2001) FLOTRAN user’s manual, Los Alamos National Laboratory Report LA-UR-01-2349, Los Alamos, NM.
  • Nitao J.J. (1996) The NUFT code for modeling nonisothermal, multiphase, multicomponent flow and transport in porous media, EOS, T. Am. Geophys. Union 74, 3, 3.
  • Pruess K. (2004) The TOUGH codes – a family of simulation tools for multiphase flow and transport processes in permeable media, Vadose Zone J. 3, 738-746.
  • Schlumberger (2007) Eclipse Technical Description 2007.1.
  • Steefel C.I. (2001) CRUNCH, Lawrence Livermore National Laboratory Report, Livermore, CA.
  • White M.D., Oostrom M. (1997) STOMP, Subsurface Transport Over Multiple Phases, Pacific Northwest National Laboratory Report PNNL-11218, Richland, WA.
  • Class H., Ebigbo A., Helmig R., Dahle H.K., Nordbotten J.M., Celia M.A., Audigane P., Darcis M., Ennis-King J., Fan Y., Flemisch B., Gasda S.E., Jin M., Krug S., Labregere D., Beni A.N., Pawar R.J., Sbai A., Thomas S.G., Trenty L., Wei L. (2009) A benchmark study on problems related to CO2 storage in geologic formations: Summary and discussion of the results, Comput. Geosci., online first: DOI 10.1007/s10596-009-9146-x.
  • Pruess K., García J., Kovscek T., Oldenburg C., Rutqvist J., Steefel C., Xu T. (2004) Code intercomparison builds confidence in numerical simulation models for geologic disposal of CO2, Energy 29, 1431-1444. [CrossRef]
  • Schrefler B.A., Gawin D. (1996) The effective stress principle: incremental or finite form? Int. J. Numer. Anal. Met. 20, 785-815. [CrossRef]
  • Biot M.A. (1941) General theory of three-dimensional consolidation, J. Appl. Phys. 12, 155-164. [CrossRef]
  • Bowen R.M. (1976) Theory of mixture, in Continuum Physics, Vol. III, Eringen A.C. (ed.), Academic Press, New York, pp. 1-127.
  • Truesdell C., Toupin R.A. (1960) The classical field theories, in Handbuch der Physik, Vol. III/1, Flügge S. (ed.), Springer, Berlin, pp. 226-902.
  • Bowen R.M. (1980) Incompressible porous media models by use of the theory of mixtures, Int. J. Eng. Sci. 18, 9, 1129-1148. [CrossRef]
  • de Boer R., Ehlers W. (1986) On the problem of fluid- and gasfilled elasto-plastic solids, Int. J. Solids Struct. 22, 1231-1242. [CrossRef]
  • Lewis R.W., Schrefler B.A. (1998) The finite element method in the static and dynamic deformation and consolidation of porous media, 2nd edition, Wiley, New York.
  • Prevost P. (1980) Mechanics of continuous porous media, Int. J. Eng. Sci. 18, 787-800. [CrossRef]
  • de Boer R. (2000) Theory of porous media: Highlights in historical development and current state, Springer, Berlin.
  • EhlersW., Bluhm J. (2002) Porous media: Theory, experiments and numerical applications, Springer, Berlin.
  • Park C.-H., Aral M.M. (2007) Sensitivity of the solution of the Elder problem to density, velocity and numerical perturbations, J. Contam. Hydrol. 92, 33-49. [CrossRef] [PubMed]
  • Korsawe J., Starke G., Wang W., Kolditz O. (2006) Finite element analysis of poro-elastic consolidation in porous media: Standard and mixed approaches, Comput. Methods Appl. M. 195, 1096-1115. [CrossRef]
  • Truty A., Zimmermann T. (2006) Stabilized mixed finite element formulations for materially nonlinear partially saturated two-phase media, Comput. Methods Appl. M. 195, 1517-1546. [CrossRef]
  • Kolditz O., De Jonge J. (2004) Non-isothermal two-phase flow in low-permeable porous media, Comput. Mech. 33, 5, 345-364. [CrossRef]
  • Li X., Liu Z., Lewis R.W. (2005) Mixed finite element method for coupled thermo-hydro-mechanical process in poro-elastoplastic media at large strains, Int. J. Numer. Meth. Eng. 64, 667-708. [CrossRef]
  • Sanavia L., Pesavento F., Schrefler B.A. (2006) Finite element analysis of non-isothermal multiphase geomaterials with application to strain localisation simulation, Comput.Mech. 37, 331-348. [CrossRef]
  • Wang W., Kosakowski G., Kolditz O. (2009) A parallel finite element scheme for thermo-hydro-mechanical (THM) coupled problems in porous media, Comput. Geosci. 35, 1631-1641. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Görke U.-J., Wimmer M.A., Alini M., Schneider E., Günther H. (2006) Multiscale finite element modeling in tissue engineering of articular cartilage, Eur. Cells Mater. 12, 1, 19.
  • Bielinski A. (2007) Numerical simulation of CO2 sequestration in geological formations, PhD Thesis, Institute of Hydraulic Engineering, University of Stuttgart.
  • Truesdell C. (1984) Thermodynamics of diffusion, in Rational Thermodynamics, Truesdell C. (ed.), 2nd edition, Springer, New York, pp. 219-236.
  • Bishop A.W. (1959) The principle of effective stress, Teknisk Ukeblad 39, 859-863.
  • Nuth M., Laloui L. (2008) Effective stress concept in unsaturated soils: Clarification and validation of a unified framework, Int. J. Numer. Anal. Met. 32, 771-801. [CrossRef]
  • Brooks R.H., Corey A.T. (1964) Hydraulic properties of porous media, Hydrology Paper No. 3, Colorado State University, Fort Collins, CO.
  • van Genuchten M.T. (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J. 44, 892-898. [CrossRef]
  • Finsterle S. (1993) Inverse Modellierung zur Bestimmung hydrogeologischer Parameter eines Zweiphasensystems, Tech. Rep., Versuchsanstalt für Wasserbau, Hydrologie und Graziologie, Eidgenössische Technische Hochschule Zürich.
  • Ehlers W., Ellsiepen P., Ammann M. (2001) Time- and spaceadaptive methods applied to localization phenomena in empty and saturated micropolar and standard porous materials, Int. J. Numer. Meth. Eng. 52, 503-526. [CrossRef]
  • Helmig R. (1997) Multiphase flow and transport processes in the subsurface: A contribution to the modelling of hydrosystems, Springer, Berlin.
  • Buckley S.E., Leverett M.C. (1942) Mechanism of fluid displacement in sands, Trans. AIME 146, 107-116.
  • Liakopoulos A.C. (1965) Retention and distribution of moisture in solid after infiltration has ceased, IAHS Bulletin 10, 2, 58-85.
  • McWhorter D.B., Sunada D.K. (1990) Exact integral solutions for two-phase flow, Water Resour. Res. 26, 3, 399-413. [CrossRef]
  • Kueper B.H., Abbott W., Farquhar G. (1989) Experimental observations of multiphase flow in heterogeneous porous media, J. Contam. Hydrol. 5, 83-95. [CrossRef]
  • Kolditz O. et al. (2009) www.opengeosys.net.
  • Rutqvist J., Barr D., Birkholzer J.T., Chijimatsu M., Kolditz O., Liu Q., Oda Y., Wang W., Zhang C. (2008) Results from an international simulation study on coupled thermal, hydrological, and mechanical processes near geological nuclear waste repositories, Nucl. Technol. 163, 1, 101-109.
  • Bachu S. (2003) Screening and ranking of sedimentary basins for sequestration of CO2 in geological media, Environ. Geol. 44, 3, 277-289. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.