Dossier: Simulation Tools for Powertrain Design and Control
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 64, Number 3, May-June 2009
Dossier: Simulation Tools for Powertrain Design and Control
Page(s) 259 - 284
DOI https://doi.org/10.2516/ogst/2008051
Published online 09 June 2009
  • Lafossas F.A., Marbaix M., Menegazzi P. (2007) Development and application of a 0D D.I. Diesel combustion model for emissions prediction, SAE Technical Paper No. 2007-01-1841. [Google Scholar]
  • Albrecht A., Corde G., Knop V., Boie H., Castagne M. (2005) 1D simulation of turbocharged gasoline direct injection engine for transient strategy optimization, SAE Technical Paper No. 2005-01-0693. [Google Scholar]
  • Albrecht A., Chauvin J., Lafossas F.A., Potteau S., Corde G. (2006) Development of highly premixed combustion Diesel engine model: from simulation to control design. SAE Technical Paper No. 2006-01-1072. [Google Scholar]
  • Tao F., Liu Y., Rempelewert H., Foster D.E., Reitz R.D. (2005) Modeling the effects of EGR and injection pressure on the soot formation in a High-Speed Direct-Injection (HSDI) Diesel engine using a multi-step phenomenological soot model, SAE Technical Paper No. 2005-01-0121. [Google Scholar]
  • Vibe I.I. (1970) Brennverlauf und Kreisprozess von Verbrennungsmotoren, VEB Verlag Technik. [Google Scholar]
  • Heywood J.B. (1988) Combustion in Compression-Ignition engines, in Internal combustion engine fundamentals, McGraw-Hill, New York. [Google Scholar]
  • Cesario N., Muscio C., Farina M., Amato P., Lavorgna M. (2004) Modelling the rate of heat release in common rail Diesel engines: a soft computing approach, SAE Technical Paper No. 2004-01-2967. [Google Scholar]
  • Arsie I., Di Genova F., Pianese C., Rizzo G., Sorrentino M., Caraceni A., Cioffi P., Flauti G. (2003) A single-zone model for combustion and NOx simulation in common-rail multi-jet Diesel engines, SAE Technical Paper No. 2003-01-79. [Google Scholar]
  • Hiroyasu H.,Kadota T.,Arai M. (1983) Development and use of a spray combustion modeling to predict Diesel engine efficiency and pollutant emissions, Bull. JSME 26, 214, 569-583. [CrossRef] [Google Scholar]
  • Asay R.J., Svensson K.I., Tree D.R. (2004) An empirical, mixing-limited, zero-dimensional model for Diesel combustion, SAE Technical Paper No. 2004-01-0924. [Google Scholar]
  • Dec J.E. (1997) A conceptual model of DI Diesel combustion based on laser-sheet imaging, SAE Technical Paper No. 970873. [Google Scholar]
  • Mauviot G., Albrecht A., Poinsot T. (2006) A new 0D approach for Diesel combustion modeling coupling probability density function with complex chemistry, SAE Technical Paper No. 2006-01-3332. [Google Scholar]
  • Mauviot G. (2007) Développement d'une modélisation phénoménologique de chambres de combustion de moteurs à piston par réduction de modèle physique 3-D dans la perspective d'une intégration dans un outil de simulation système, PhD Thesis, UPMC. [Google Scholar]
  • Barba C.,Burkhardt C.,Boulouchos K.,Bargende M. (1999) An empirical model for precalculating the combustion rate of the Common Rail Diesel engine for passenger cars, Motortechnische Z. 60, 4, 262-270. [CrossRef] [Google Scholar]
  • Barba C., Burkhardt C., Boulouchos K., Bargende M. (2000) A phenomenological combustion model for heat release rate prediction in high speed DI Diesel engines with common-rail injection, SAE Technical Paper No. 2000-01-2933. [Google Scholar]
  • Chmela F., Orthaber G. (1999) Rate of heat release prediction for direct injection Diesel engines based on purely mixing controlled combustion, SAE Technical Paper No. 1999-01-0186. [Google Scholar]
  • Chmela F., Engelmayer M., Pirker G., Wimmer A. (2004) Prediction of turbulence controlled combustion in Diesel engines, THIESEL conference on thermo and fluid dynamic processes in Diesel engines, Valence - Spain, 2004. [Google Scholar]
  • Schihl P., Tasdemir J., Schwarz E., Bryzik W. (2002) Development of a zero-dimensional heat release model for application to small bore Diesel engines, SAE Technical Paper No. 2002-01-0073. [Google Scholar]
  • Kouremenos D.A., Rakopoulos C.D., Hountalas D.T. (1997) Multi-zone combustion modelling for the prediction of pollutants emissions and performance of DI Diesel engines, SAE Technical Paper No. 970635. [Google Scholar]
  • Jaine T. (2004) Simulation zérodimensionnelle de la combustion dans un moteur Diesel à Injection Directe, PhD Thesis, Université d'Orléans. [Google Scholar]
  • Kong S.C., Ayoub N., Reitz D. (1992) Modeling combustion in compression ignition homogeneous charge engine. SAE Technical Paper No. 920512. [Google Scholar]
  • Kong S.C., Marriot C.D., Reitz C.D., Christensen M. (2001) Modeling and experiments of HCCI engine combustion using detailed chemical kinetics with multidimensional CFD, SAE Technical Paper No. 2001-01-1026. [Google Scholar]
  • Kong S.C., Han Z., Reitz D. (2002) The development and application of a diesel ignition and combustion model for multidimensional engine simulation, SAE Technical Paper No. 950278. [Google Scholar]
  • Kong S.C., Marriot C.D., Rutland C.J., Reitz D. (2002) Experiments and CFD modeling of direct injection gasoline HCCI engine combustion, SAE Technical Paper No. 2002-01-1925. [Google Scholar]
  • Patel A., Kong S.C., Reitz R.D. (2004) Development and validation of a reduced reaction mechanism for HCCI engine simulation, SAE Technical Paper No. 2004-01-0558. [Google Scholar]
  • Nishida K., Hiroyasu H. (1989) Simplified three-dimensional modeling of mixture formation and combustion in a Diesel engine, SAE Technical Paper No. 890269. [Google Scholar]
  • Hasse C., Barths H., Peters N. (1999) Modeling the effects of split-injections in Diesel engines using representative interactive flamelets, SAE Technical Paper No. 1999-01-3574. [Google Scholar]
  • Hasse C., Bikas G., Peters N. (2000) Modeling diesel combustion using the eulerian particle flamelet model (epfm), SAE Technical Paper No. 2000-01-2934. [Google Scholar]
  • Barths H.,Pitsch H.,Peters N. (1999) 3D simulation of DI diesel combustion and pollutant formation using a twocomponent reference fuel, Oil Gas Sci. Technol. 54, 2, 233-244. [CrossRef] [EDP Sciences] [Google Scholar]
  • Michel J.B.,Colin O.,Veynante D. (2008) Modeling ignition and chemical structure of partially premixed turbulent flames using tabulated chemistry, Combust. Flame 152, 1-2, 80-99. [CrossRef] [Google Scholar]
  • Peters N., Rogg B. (1993) Reduced kinetic mechanisms for applications in combustion systems, Springer Verlag, Heidelberg. [Google Scholar]
  • Peters N. (2000) Nonpremixed turbulent combustion, in Turbulent combustion, Cambridge University Press, Cambridge. [Google Scholar]
  • Colin O.,Benkenida A.,Angelberger C. (2003) 3D Modeling of Mixing, ignition and combustion phenomena in highly stratified gasoline engine, Oil Gas Sci. Technol. 58, 1, 47-52. [Google Scholar]
  • Colin O.,Benkenida A. (2004) The 3-zones extended coherent flame model (ECFM3Z) for computing premixed/diffusion combustion, Oil Gas Sci. Technol. 59, 6, 593-609. [Google Scholar]
  • Wang Z., Wang J., Shuai S. (2004) Numerical simulation of HCCI engine with multistage gasoline Direct Injection using 3d-cfd with detailed chemistry, SAE Technical Paper No. 2004-01-0563. [Google Scholar]
  • Wang Z., Shuai S., Wang J., Tian G., An X. (2006) Modeling of HCCI combustion from 0D to 3D, SAE Technical Paper No. 2006-01-1364. [Google Scholar]
  • Knop V.,Jay S. (2006) Latest developments in gasoline Auto-Ignition modelling applied to an optical CAITM engine, Oil Gas Sci. Technol. 61, 1, 121-137. [CrossRef] [EDP Sciences] [Google Scholar]
  • Pires-da-Cruz A.,Baritaud T.,Poinsot T.J. (2001) Self-ignition and combustion modeling of initially nonpremixed turbulent systems, Combust. Flame 124, 1-2, 65-81. [CrossRef] [Google Scholar]
  • Bruneaux G. (2001) Liquid and vapor spray structure in high pressure Common Rail Diesel injector, Atomization Spray. 11, 5, 533-556. [CrossRef] [Google Scholar]
  • Bruneaux G., Augé M., Lemenand C. (2004) A study of Combustion structure in high pressure single hole Common Rail Direct Diesel Injection using laser induced fluorescence of radicals, COMODIA Congress, Yokohama - Japan, 2004. [Google Scholar]
  • Bruneaux G. (2005) Mixing process in high pressure Diesel jets by normalized laser induced exciplex fluorescence. Part I: free jet, SAE Technical Paper No. 2005-01-2100. [Google Scholar]
  • Verhoeven D., Vanhemelryck J.-L., Baritaud T. (1998) Macroscopic and ignition characteristics of high-pressure sprays of single-component fuels, SAE Technical Paper No. 981069. [Google Scholar]
  • Hiroyasu H., AraiM. (1990) Structures of fuel sprays in Diesel engines, SAE Technical Paper No. 900475. [Google Scholar]
  • Jaine T., Benkenida A., Menegazzi P., Higelin P. (2003) Zero dimensional computation of Diesel spray - comparison with experiments and 3D model, 6th International Conference on Engines for Automobile, Capri - Italy, 2003. [Google Scholar]
  • Subramanian G. (2005) Modélisation de l'auto-inflammation : analyse des effets de la dilution par les gaz brûlés et des interactions avec la turbulence dédiée aux moteurs Diesel à charge homogène, PhD Thesis, INSA Rouen. [Google Scholar]
  • Pope S.B. (1985) PDF methods for turbulent reactive flows, Prog. Energ. Combust. 19, 11, 119-192. [Google Scholar]
  • Gicquel O.,Darabiha N.,Thévenin D. (2000) Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion, Proc. Combust. Inst. 28, 1901-1908. [CrossRef] [Google Scholar]
  • Veynante D.,Vervisch L. (2002) Turbulent combustion modeling, Prog. Energ. Combust. 28, 3, 193-266. [Google Scholar]
  • Lefebvre A.H. (1989) Drop evaporation, in Atomization and sprays, Hemisphere Publishing Corporation, United States of America. [Google Scholar]
  • Reid R.C., Prausnitz J.M., Poling B.E. (1987) The properties of gases & liquids, McGraw-Hill, United States of America. [Google Scholar]
  • Ghassemi H.,Baek S.W.,Khan S.Q. (2006) Experimental study on binary droplet evaporation at elevated pressures and temperatures, Combust. Sci. Technol. 178, 6, 1031-1053. [CrossRef] [Google Scholar]
  • Siebers D.L. (1998) Liquid-phase fuel penetration in Diesel sprays, SAE Technical Paper No. 980809. [Google Scholar]
  • Siebers D. (1999) Scaling liquid-phase fuel penetration in diesel sprays based on mixing-limited vaporization, SAE Technical Paper No. 1999-01-0528. [Google Scholar]
  • Naber J.D., Siebers D. (1996) Effects of gas density and vaporization on penetration and dispersion of diesel sprays, SAE Technical Paper No. 960034. [Google Scholar]
  • Desantes J.M.,Payri R.,Salvador F.J.,Gil A. (2005) Development and validation of a theoretical model for diesel spray penetration, Fuel 85, 7-8, 910-917. [CrossRef] [Google Scholar]
  • Girimaji S.S. (1991) Assumed Formula -PDF Model for Turbulent Mixing: Validation and Extension to Multiple Scalar Mixing, Combust. Sci. Technol. 78, 177-196. [CrossRef] [Google Scholar]
  • Kuo K.K. (2005) Gaseous diffusion flames and combustion of a single liquid fuel droplet, in Principles of combustion, Wiley J. (ed.), John Wiley & Sons, Hoboken - New Jersey. [Google Scholar]
  • Givler S.D.,Abraham J. (1996) Supercritical droplet vaporization and combustion studies, Prog. Energ. Combust. 22, 4, 1-28. [CrossRef] [Google Scholar]
  • Sirignano W.A. (2004) Droplet behavior at near-critical, transcritical, and supercritical conditions, in Fluid dynamics and transport of droplets and sprays, Cambridge University Press, Irvine. [Google Scholar]
  • Neely G.D., Sasaky S., Huang Y., Leet J.A., Stewart D.W. (2005) New Diesel emission control strategies to meet US Tier 2 emissions regulations, SAE Technical Paper No. 2005-01-1091. [Google Scholar]
  • Kee R.J., Rupley F.M., Miller J.A. (1989) CHEMKIN-II: a fortran chemical kinetics package for the analysis of gasphase chemical kinetics, Sandia National Laboratories report No. SNL-89-8009. [Google Scholar]
  • Curran H.J.,Gaffuri P.,Pitz W.J.,Westbrook C.K. (1998) A comprehensive modeling study of n-heptane oxidation, Combust. Flame 114, 1-2, 149-177. [CrossRef] [Google Scholar]
  • Maas U.,Pope S.B. (1992) Implementation of simplified chemical kinetics based on low-dimensional manifolds, Proc. Combust. Inst. 24, 1, 103-112. [CrossRef] [Google Scholar]
  • Maas U.,Pope S.B. (1992) Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space, Combust. Flame 88, 3-4, 239-264. [CrossRef] [Google Scholar]
  • Embouazza M. (2005) Étude de l'auto-allumage par réduction des schémas cinétiques chimiques. Application à la combustion homogène Diesel, PhD Thesis, École Centrale de Paris. [Google Scholar]
  • Gauthier B.M.,Davidson D.F.,Hanson R.K. (2004) Shock tube determination of ignition delay times in full-blend and surrogate fuel mixtures, Combust. Flame 139, 4, 300-311. [CrossRef] [Google Scholar]
  • Sihling K., Woschni G. (1979) Experimental investigation of the instantaneous heat transfer in the cylinder of a high speed Diesel engine, SAE Technical Paper No. 790833. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.