Dossier: Simulation Tools for Powertrain Design and Control
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 64, Number 3, May-June 2009
Dossier: Simulation Tools for Powertrain Design and Control
Page(s) 243 - 258
DOI https://doi.org/10.2516/ogst/2009002
Published online 17 June 2009
  • Maas U.,Pope S. (1992) Simplifying chemical kinetics: Intrinsic Low-Dimensional manifolds in composition space, Combust. Flame 88, 239-264. [CrossRef] [Google Scholar]
  • Gicquel O.,Thevenin D.,Hilka M.,Darabiha N. (1999) Direct numerical simulation of turbulent premixed flames using intrinsic low-dimensional manifolds, Combust. Theor. Model. 3, 3, 479-502. [CrossRef] [Google Scholar]
  • Correa C.,Niemann H.,Schramm B.,Warnatz J. (2000) Reaction mechanism reduction for higher hydrocarbons by the ILDM method, Proc. Combust. Inst. 28, 2, 1607-1614. [CrossRef] [Google Scholar]
  • Pope S.B. (1997) Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation, Combust. Theor. Model. 1, 41-63. [CrossRef] [Google Scholar]
  • Halstead M.,Kirsh L.,Quinn C. (1977) The autoignition of hydrocarbon fuels at high temperatures and pressures - Fitting of a mathematical model, Combust. Flame 30, 45-60. [CrossRef] [Google Scholar]
  • Buda F., Bounaceur R., Warth V., Glaude P.A., Founet R., BattinLeclerc F. (2005) Progress toward a unified detailed kinetic model for the autoignition of alkanes from C4 to C10 between 600 and 1200 K, Combust. Flame 142, 170-186. [CrossRef] [Google Scholar]
  • Curran H.J.,Gaffuri P.,Pitz W.J.,Westbrook C.K. (2002) A comprehensive modeling study of iso-octane oxidation, Combust. Flame 129, 3, 253-280. [CrossRef] [Google Scholar]
  • Gicquel O.,Darabiha N.,Thevenin D. (2000) Laminar premixed hydrogen / air counterflow flame simulations using flame prolongation of ILDM with differential diffusion, Proc. Combust. Inst. 28, 2419-2425. [CrossRef] [Google Scholar]
  • Fiorina B.,Baron R.,Gicquel O.,Thevenin D.,Carpentier S.,Darabiha N. (2003) Modelling non-adiabatic partially premixed flames using flame-prolongation of ILDM, Combust. Theor. Model. 7, 3, 449-470. [CrossRef] [Google Scholar]
  • Fiorina B.,Gicquel O.,Vervisch L.,Carpentier S.,Darabiha N. (2005) Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation, Combust. Flame 140, 3, 147-160. [CrossRef] [Google Scholar]
  • Fiorina B.,Gicquel O.,Carpentier S.,Darabiha N. (2005) Validation of the FPI chemistry reduction method for diluted nonadiabatic premixed flames, Combust. Sci. Technol. 176, 785-797. [CrossRef] [Google Scholar]
  • Domingo P.,Vervisch L.,Payet S.,Hauguel R. (2005) DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry, Combust. Flame 143, 4, 566-586. [CrossRef] [Google Scholar]
  • Van Oijen J.A.,Lammers F.A., de Goey L.P.H. (2001) A comprehensive modeling study of iso-octane oxid, Combust. Flame 127, 3, 2124-2134. [CrossRef] [Google Scholar]
  • Vervisch L., Hauguel R., Domingo P., Rullaud M. (2004) Three facets of turbulent combustion modelling: DNS of premixed V-flame, LES of lifted nonpremixed flame and RANS of jet-flame, J. Turbulence 5. [Google Scholar]
  • Michel J.B.,Colin O.,Veynante D. (2008) Modeling ignition and chemical structure of partially premixed turbulent flames using tabulated chemistry, Combust. Flame 152, 80-99. [CrossRef] [Google Scholar]
  • Domingo P.,Vervisch L.,Veynante D. (2008) Large-eddy simulation of a lifted methane jet flame in a vitiated coflow, Combust. Flame 152, 415-432. [CrossRef] [Google Scholar]
  • Fiorina B.,Gicquel O.,Vervisch L.,Carpentier S.,Darabiha N. (2005) Premixed turbulent combustion modeling using tabulated detailed chemistry and PDF, Proc. Combust. Inst. 30, 1, 867-874. [CrossRef] [Google Scholar]
  • Colin O.,Benkenida A. (2004) The 3-Zones Extended Coherent Flame Model (ECFM3Z) for Computing Premixed/Diffusion Combustion, Oil Gas Sci. Technol. 59, 593-609. [CrossRef] [EDP Sciences] [Google Scholar]
  • Zolver M.,Klahr D.,Bohbot J.,Laget O.,Torres A. (2003) Reactive CFD in Engines with a New Unstructured Parallel Solver, Oil Gas Sci. Technol. 58, 33-46. [CrossRef] [EDP Sciences] [Google Scholar]
  • Galpin J.,Angelberger C.,Naudin A.,Vervisch L. (2008) Large-eddy simulation of H2-air auto-ignition using tabulated detailed chemistry, J. Turbulence 9, 13, 1-21. [CrossRef] [Google Scholar]
  • Subramanian G., Vervisch L., Ravet F. (2007) New Developments in turbulent combustion modelling for engine design: ECFM-CLEH combustion submodel, SAE paper 2007-01-0154. [Google Scholar]
  • Colin O., Pires da Cruz A.,Jay S. (2005) Detailed chemistry-based auto-ignition model including low temperature phenomena applied to 3-D engine calculations, Proc. Combust. Inst. 30, 2, 2649-2656. [CrossRef] [Google Scholar]
  • Galpin J.,Naudin A.,Vervisch L.,Angelberger C.,Colin O.,Domingo P. (2008) Large-eddy simulation of a fuel-lean premixed turbulent swirl-burner, Combust. Flame 155, 1-2, 247-266. [CrossRef] [Google Scholar]
  • Battin-Leclerc F. (2008) Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates, Prog. Energy Combust. Sci. 34, 4, 440-498. [Google Scholar]
  • Ribert G.,Gicquel O.,Darabiha N.,Veynante D. (2006) Tabulation of complex chemistry based on self-similar behavior of laminar premixed flames, Combust. Flame 146, 649-664. [CrossRef] [Google Scholar]
  • Embouazza M., Gicquel O., Darabiha N. (2003) Modelling autoignition of HCCI engine by reduced tabulated chemistry, Proc. Third Mediterranean Comb. Symp. [Google Scholar]
  • Mauviot G., Albrecht A., Poinsot T.J. (2006) A new 0D approach for Diesel Combustion Modeling coupling probability density function with complex chemistry, SAE paper 2006-01-3332. [Google Scholar]
  • Anderlohr J.M., Piperel A., Pires da Cruz A.,Bounaceur R.,Battin-Leclerc F.,Montagne X. (2008) Influence of EGR compounds of the oxidation of an HCCI-Diesel surrogate, Proc. Combust. Inst. 32, 2, 2851-2859. [CrossRef] [Google Scholar]
  • Kee R.J., Rupley F.M., Miller J.A., Coltrin M.E., Grcar J.F., Meeks E., Moffat H.K., Lutz A.E., Dixon-Lewis G., Smooke M.D., Warnatz J., Evans G.H., Larson R.S., Mitchell R.E., Petzold L.R., Reynolds W.C., Caracotsios M., Stewart W.E., Glarborg P., Wang C., McLellan C.L., Adigun O., Houf W.G., Chou C.P., Miller S.F., Ho P., Young P.D., Young D.J., Hodgson D.W., Petrova M.V., Puduppakkam K.V. (2006) Chemkin Release 4.1, Reaction Design Report - San Diego. [Google Scholar]
  • Pires da Cruz A., Pera C., Anderlohr J., Bounaceur R., Battin-Leclerc F.A. (2007) Complex chemical kinetic mechanism for the oxidation of gasoline surrogate fuels: n-heptane, iso-octane and toluene - mechanism development and validation, Proc. Third European Combustion Meeting, Chania. [Google Scholar]
  • Anderlohr J.M., Bounaceur R., Pires da Cruz A., Battin-leclerc F. (2008) Modelling of autoignition and NO sensitization for the oxidation of IC-engine surrogate fuels, Combust. Flame 156, 2, 505-521. [Google Scholar]
  • Jay S., Beard P., Pires da Cruz A. (2007) Modeling Coupled Processes of CO and Soot Formation and Oxidation for conventional and HCCI Diesel Combustion, SAE paper 2007-01-0162. [Google Scholar]
  • Habchi C., Lafossas F.A., Beard P. (2004) Formulation of a fuel lumping model to assess the effects of fuel thermodynamic properties on internal combustion engine mixture preparation and combustion, SAE paper 2004-01-1996. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.