Dossier: Quantitative Methods in Reservoir Characterization
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 62, Number 2, March-April 2007
Dossier: Quantitative Methods in Reservoir Characterization
Page(s) 207 - 224
DOI https://doi.org/10.2516/ogst:2007018
Published online 14 June 2007
  • Manceau, E., Zabalza-Mezghani, I., and Feraille M. (2002) Cougar_Opt software user Manual, Version 2.0, IFP. [Google Scholar]
  • Manceau, E., Feraille, M., Zabalza-Mezghani, I., Portella, R. and Reis, L.C. (2005) Advanced risk analysis approach for optimization of a water injection program - Illustration on a Brazilian field case, SPE-94845. [Google Scholar]
  • Johnson, M. E.,Moore, L. M. and Ylvisaker, D. (1990) Minimax and Maximin distance designs. J. Stat. Plan. Infer., 26, 131–148. [CrossRef] [MathSciNet] [Google Scholar]
  • Sacks, J.,Schiller, S. and Welch, W. (1989) Design for computer Experiments. Technometrics, 31, 41–47. [Google Scholar]
  • Sacks, J.,Welch, W.,Mitchell, T., and Wynn, P. (1989) Design and Analysis of Computer Experiments (with discussion). Stat. Sci., 4, 409–435. [Google Scholar]
  • Chilès J.-P. and Delfiner, P. (1999) Geostatistics, Modeling Spatial Uncertainty, Wiley Series in probability and statistics. [Google Scholar]
  • Nelder, J.A.,Mead, R. (1965) A simplex Method for Optimization. Comput. J., 7, 308. [Google Scholar]
  • Currin, C.,Mitchell, T.J.,Morris, M.D. and Ylvisaker, D. (1991) Bayesian prediction of deterministic functions, with an application to the design an analysis of computer experiments. J. Am. Stat. Assoc., 86, 953–963. [CrossRef] [MathSciNet] [Google Scholar]
  • Fang, K.T., Li, R. and Sudjiants, A. (2005) Design and Modeling for Computer Experiments, Chapman & Hall/CRC; London. [Google Scholar]
  • Santner, T.J., Williams, B.J. and Notz, W.I. (2003) The Design and Analysis of Computer Experiments, Springer Series in Statistics. [Google Scholar]
  • RamaRao, B.-S., LaVenue, A.-M., De Marsily, G. and Marietta, M.-G., (1995) Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields: 1. Theory and computational experiments. Water Resour. Res., 31, 475–493. [CrossRef] [Google Scholar]
  • Montgomery, D.C. and Peck, E.A. (1991) Introduction to linear regression analysis, second edition, J. Wiley. [Google Scholar]
  • Scheidt C., and Zabalza-Mezghani I. (2004) Assessing Uncertainty and Optimizing Production schemes - Experimental Designs for non-linear production response modeling - An application to early water breakthrough prevention, ECMOR IX, Cannes, 30 August-2 September 2004, France. [Google Scholar]
  • Scheidt, C. (2006) Analyse Statistique d'expériences simulées : Modélisation adaptative de réponses non-régulières par krigeage et plans d'expériences – Application à la quantification des incertitudes en ingénierie des réservoirs pétroliers, Thesis IFP - Université Louis Pasteur de Strasbourg. [Google Scholar]
  • Reis, L.C., Hu, L.Y., de Marsily, G. and Eschard, R. (2000) Production Data Integration Using a Gradual Deformation Approach: Application to an Oil Field (Offshore Brazil), SPE 63064. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.