Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 61, Number 5, September-October 2006
Page(s) 677 - 689
DOI https://doi.org/10.2516/ogst:2006006
Published online 01 January 2007
  • Somorjai, G.A. (2004) On the Move, Nature, 430, 730. [CrossRef] [PubMed]
  • Friedel, J. (1978) Physics of Metals, Cambridge University Press, Cambridge.
  • Desjonqueres, M.C. and Spanjaard, D. (1998) Concepts in Surface Physics, Springer-Verlag, Berlin.
  • Sinfelt, J. (2002) Role of surface science in catalysis. Surf. Sci., 500, 923. [CrossRef]
  • Zaera, F. (2001) Probing catalytic reactions at surfaces, Prog. Surf. Sci., 69, 1. [CrossRef]
  • Thomas, J.M. and Thomas, W.J., (1997) Principles and Practice of Heterogeneous Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • Iwasawa, Y. (2003) In situ characterization of supported metal catalysts and model surfaces by time-resolved and three-dimensional XAFS techniques, J. Catal., 216, 165. [CrossRef]
  • Somorjai, G.A. and McCrea, K. (2001) Roadmap for catalysis science in the 21st century: a personal view of building the future on past and present accomplishments. Appl. Catal. A-Gen., 222, 3. [CrossRef]
  • Gates, B.C. (2000) Supported nanostructured catalysts: Metal complexes and metal clusters. J. Mol. Catal. A-Chem., 163, 55. [CrossRef]
  • Russell, A.E. and Rose, A. (2004) X-ray absorption spectroscopy of low temperature fuel cell catalysts, Chem. Rev., 104, 4613. [CrossRef]
  • Pârvulescu, V.I.,Grange, P. and Delmon, B. (1998) Catalytic removal of NO. Catal. Today, 46, 233. [CrossRef]
  • Garin, F. (2001) Environmental catalysis, Appl. Catal. A-Gen., 222, 183. [CrossRef]
  • Dry, M.E. (1981) The Fischer-Tropsch Synthesis in Catalysis Sciences and Technology, Anderson, J.R. and Boudart, M., (Eds.) 1, Springer Verlag, Berlin, 159.
  • Van Wechem, V.M.H. and Senden, M.M.G., (1994) Conversion of natural gas to transportation fuels via the Shell Middle Distillate Process, Stud. Surf. Sci. Catal., 81, 43.
  • Bazin, D.,Mottet, C.,Tréglia, G. and Lynch, J. (2000) New trends in heterogeneous catalysis processes on metallic clusters from synchrotron radiation and theoretical studies, Appl. Surf. Sci. 164, 140. [CrossRef]
  • Bazin, D. (2002) Solid state concepts to understand catalysis using nanoscale metallic particles, Top. Catal., 18, 79. [CrossRef]
  • Bazin, D. (2003) Solid State Physics and Synchrotron Radiation Techniques to Understand Heterogeneous Catalysis in nanotechnology, Ed. G.A. Somorjai, S. Hermans, B. Zhou, Ed. kluwer.
  • Ino, A. (1969) Stability of multiply-twinned particles J. Phys. Soc. Jpn, 27, 941.
  • Wulff, G.V. (1901) Zur frage der Geschwindigkeit des Wachstums und der Auflosung der Krystalflachen, Z. Krystallogr., 34, 449.
  • Pesant, L., Matta, J., Garin, F., Ledoux, M.J., Bernhardt, P., Pham, C. and Pham-Huu C. (2004) A high-performance Pt/-SiC catalyst for catalytic combustion of model carbon particles (CPs). Appl. Catal. A-Gen., 266, 21. [CrossRef] [MathSciNet]
  • Nohair, B.,Especel, C.,Marécot, P.,Montassier, C.,Hoang, L.C., and Barbier, J. (2004) Selective hydrogenation of sunflower oil over supported precious metals. C. R. Acad. Sci. II C, 7, 113.
  • Henry, C. (2000) Catalytic activity of supported nanometersized metal clusters, Appl. Surf. Sci., 164, 252. [CrossRef]
  • Alvarado, P., Dorantes-Davila, J.L. and Pastor G.M. (1998) Magnetic properties of 3d transition-metal nanostructures: Cr and V clusters embedded in bulk Fe, Phys. Rev. B, 58, 12116. [CrossRef]
  • Reddy, B.V.,Khanna, S.N. and Jena, P. (1999) Structure and magnetic ordering in Cr8 and Cr13 clusters, Phys. Rev. B 60, 15598. [CrossRef]
  • Oda, T.,Pasquarello, A. and Car, R. (1998) Fully unconstrained approach to noncollinear magnetism: Application to small Fe clusters, Phys. Rev. Lett., 80, 3622. [CrossRef]
  • Guirado-Lopez, R. (2001) Magnetic anisotropy of fcc transition-metal clusters: Role of surface relaxation, Phys. Rev. B, 63, 174420. [CrossRef]
  • Calleja, M.,Rey, C.,Alemany, M.M.G.,Gallego, L.J.Ordejon, P.,Sanchez-Portal, D.,Artacho, E. and Soler, J.M. (1999) Self-consistent density-functional calculations of the geometries, electronic structures, and magnetic moments of Ni-Al clusters, Phys. Rev. B, 60, 2020. [CrossRef]
  • Mottet, C.Tréglia, G. and Legrand, B. (1997) New magic numbers in metallic clusters: an unexpected metal dependence, Surf. Sci. Lett., 383, L719. [CrossRef]
  • Guirado-Lopez, R.,Desjonqueres, M.C. and Spanjaard, D. (1999) Electronic and magnetic structure in 4d transition metal clusters, Appl. Surf. Sci., 144, 663. [CrossRef]
  • Barreteau, C.,Spanjaard, D. and Desjonqueres, M.C. (1999) Electronic structure and energetics of transition metal surfaces and clusters from a new spd tight-binding method, Surf. Sci., 433, 751. [CrossRef]
  • Guirado-Lopez, R.,Desjonqueres, M.C.,Spanjaard, D. and Aguilera-Granja, F. (1998) Electronic and geometrical effects on the magnetism of small RuN clusters, J. Magn. Magn. Mat., 186, 214. [CrossRef]
  • Mottet, C.,Tréglia, G. and Legrand, B. (1996) Electronic structure of Pd cluster in the tight-binding approximation: influence of spd hybridization, Surf. Sci., 352, 675. [CrossRef]
  • Khoutami, A. (1993) PhD, University of Paris XI.
  • Car, R. and Parrinello, M. (1985) Unified Approach for Molecular Dynamics and Density-Functional Theory, Phys. Rev. Lett., 55, 2471. [CrossRef] [PubMed]
  • Hall, B.D.,Flueli, M.,Monot, R. and Borel, J.P. (1991) Multiply twinned structures in unsupported ultrafine silver particles observed by electron diffraction, Phys. Rev. B, 43, 3906. [CrossRef]
  • Pinto, A., Pennisi, A.R., Faraci, G., D'agostino, G.,Mobilio, S. and Boscherini, F. (1995) Evidence for truncated octahedral structures in supported gold clusters, Phys. Rev. B, 51, 5315. [CrossRef]
  • Apai, G.,Hamilton, J.F.,Stohr, J. and Thompson, A. (1979) Exafs of small Cu and Ni clusters: Binding-energy and bondlength changes with cluster size, Phys. Rev. Lett., 13, 165. [CrossRef]
  • Moraweck, B.,Clugnet, G. and Renouprez, A.J. (1979) Contraction and relaxation of interatomic distances in small platinum particles from extended X-ray absorption fine structure (EXAFS) spectroscopy, Surf. Sci., 81, L631. [CrossRef]
  • Vervish, W.,Mottet, C. and Goniakowski, J. (2002) Theoretical study of the atomic structure of Pd nanoclusters deposited on a MgO(100) surface, Phys. Rev. B, 65, 245411. [CrossRef]
  • Mottet, C.,Goniakowski, J.,Baletto, F.,Ferrando, R. and Tréglia, G. (2004) Modeling free and supported metalic nanoclusters: Structure and dynamics, Phase Transit., 77, 101. [CrossRef]
  • Lodziana, Z. and Nørskov, J.K. (2002) Interaction of Pd with steps on Al2O3 (0001), Surf. Sci., 518, L577. [CrossRef]
  • Prevot, G. and Henry, C.R. (2002) Microkinetic modeling of the CO + NO reaction on Pd/MgO particle, J. Phys. Chem. B, 106, 12191. [CrossRef]
  • Sayers, D.A.,Lytle, F.W. and Stern, E.A. (1970) Advances in X-ray Analysis, Ed. Plenum, New-York, 13, 1970.
  • Bazin, D.,Sayers, D.,Rehr, J.,Mottet, C. (1997) Numerical simulation of the Pt LIII edge white line relative to nanometer scale clusters. J. Phys. Chem., 100, 5332. [CrossRef]
  • Bazin, D.,Rehr, J.J. (2003) Limits and advantages of X-ray absorption near edge structure for nanometer scale metallic clusters, J. Phys. Chem. B 107, 12398. [CrossRef]
  • Bazin, D.,Lynch, J.,Ramos-Fernandez, M. (2003) Xas and Awaxs: Two basic tools in heterogeneous catalysis, Oil Gas Sci. Technol., 58, 683. [CrossRef] [EDP Sciences]
  • Clausen, B.S.,Grabaek, L.,Topsoe, H.,Hansen, L.B.,Stoltze, P.,Norskov, J.K. and Nielsen, O.H. (1993) A new procedure for particle size determination by EXAFS based on molecular dynamics simulations, J. Catal., 141, 368. [CrossRef]
  • Ramallo-López, J.M.,Requejo, F.G.,Craievich, A.F.,Wei, J.,Avalos-Borja, M. and Iglesia, E. (2005) Complementary methods for cluster size distribution measurements: supported platinum nanoclusters in methane reforming catalysts, J. Mol. Catal. A-Chem., 228, 299. [CrossRef]
  • Womes, M., Cholley, T., Le Peltier, F., Morin, S., Didillon, B., and Szydlowski-Schildknecht, N. (2005) Study of the reaction mechanisms between Pt(acac)2 and alumina surface sites: Application to a new refilling technique for the controlled variation of the particle size of Pt/Al2O3 catalysts, Appl. Catal. A-Gen., In Press.
  • Jacobs, G., Ghadiali, F., Pisanu, A., Borgna, A., Alvarez, W.E. and Resasco, D.E (1999) Characterization of the morphology of Pt clusters incorporated in a KL zeolite by vapor phase and incipient wetness impregnation. Influence of Pt particle morphology on aromatization activity and deactivation, Appl. Catal. A-Gen., 188, 79.
  • Frenkel, A.I.,Hills, C.W., and Nuzzo, R.G. (2001) A view from the inside: Complexity in the Atomic Scale Ordering of Supported Metal Nanoparticles, J. Phys. Chem. B., 105, 12689. [CrossRef]
  • Chao, K.J., and We, A.C. (2001) Characterization of heterogeneous catalysts by X-ray absorption spectroscopy, J. Electron Spectroscopy and Related Phenomena, 119, 175. [CrossRef]
  • Stakheev, A.Y. and Kustov, L.M. (1999) Effects of the support on the morphology and electronic properties of supported metal clusters: modern concepts and progress in 1990s, Appl. Catal. A-Gen., 188, 3. [CrossRef]
  • Bazin, D., Sayers, D., Rehr, J. (1997) Comparison between Xas, Awaxs, Asaxs & Dafs applied to nanometer scale metallic clusters, J. Phys. Chem., 101, 11040.
  • Lynch, J. (2002), Development of structural characterisation tools for catalysts. Oil Gas Sci. Technol., 57, 281.
  • Grunwaldt, J.D.,Caravati, M.,Hannemann, S. and Baiker, A. (2004) X-ray absorption spectroscopy under reaction conditions: suitability of different reaction cells for combined catalyst characterization and time-resolved studies, Phys. Chem. Chem. Phys., 6, 3037 [CrossRef]
  • Shih, C.C. and Chang, J.R. (2005) Genesis and growth of platinum subnano-particles on activated-carbon characterized by X-ray absorption spectroscopy: effects of preparation conditions, Mater. Chem. Phys., 92, 89-97. [CrossRef]
  • Yao, N.,Pinckney, C.,Lim, S.,Pak, C. and Haller, G.L. (2001) Synthesis and characterization of Pt/MCM-41 catalysts, Micropor. Mesopor. Mat., 44-45, 377. [CrossRef]
  • Chen, Y.,Ciuparu, D.,Lim, S.,Yang, Y.,Haller, G.L. and Pfefferla, L. (2004) Synthesis of uniform diameter single-wall carbon nanotubes in Co-MCM-41: effects of the catalyst prereduction and nanotube growth temperatures, J. Catal., 225, 453. [CrossRef]
  • Dou, D.,Liu, D.J.,Williamson, W.B.,Kharas, K.C. and Robota, H.J. (2001) Structure and chemical properties of Pt nitrate and application in three-way automotive emission catalysts, Appl. Catal. B-Environ., 30, 11. [CrossRef]
  • Dal Santo, V., Dossi, C., Recchia, S., Colavita, P.E., Vlaic, G. and Psaro, R. (2002) Carbon tetrachloride hydrodechlorination with organometallics-based Pt and Pd catalysts on MgO, J. Mol. Catal. A-Chem., 182-183, 157.
  • Benfield, R.E.,Grandjean, D.,Dore, J.C.,Esfahanian, H.,Wu, Z.,Kröll, M.,Geerkens, M. and Schmid, G. (2004) Structure of assemblies of metal nanowires in mesoporous alumina membranes studied by EXAFS, XANES, X-ray diffraction and SAXS, Faraday Discuss., 125, 327. [CrossRef] [PubMed]
  • Yoshitake, H. and Iwasawa, Y. (1992) Electronic metal support interaction in platinum catalysts under deuterium-ethene reaction conditions and the microscopic nature of the active sites, J. Phys. Chem. B, 96, 1329. [CrossRef]
  • Bazin, D.,Dexpert, H.,Guyot-Sionnest, N.S.,Bournonville, J.P. and Lynch, J. (1989) Exafs characterization of reforming catalysts: examples of recent applications, J. Chim. Phys., 7, 86.
  • Asakura, K.,Chun, W.J.,Shirarai, M.,Tomishige, K. and Iwasawa, Y. (1997) In-situ polarization-dependent totalreflection fluorescence XAFS studies on the structure Transformation of Pt Clusters on Al2O3(0001), J. Phys. Chem. B, 101, 5549. [CrossRef]
  • Yamauchi, R.,Gunji, I.,Endou, A.,Yin, X.,Kubo, M.,Chatterjee, A. and Miyamoto, A. (1998) Electronic and structural features of Pd3 cluster on MgO(100) surface cluster, Appl. Surf. Sci., 130, 572. [CrossRef]
  • Lopez, N.,Illas, F. and Pacchioni, G. (1999) Electronic effects in the activation of supported metal clusters: Density functional theory. study of H2 dissociation on Cu/SiO2, J. Phys. Chem. B, 103, 1712. [CrossRef]
  • Kantorovich, L.,Shluger, A.,Günster, J.,Stultz, J.,Krischok, S.,Goodman, D.W.,Stracke, P., and Kempter, V. (1999) Mg clusters on MgO surfaces: characterization by MIES and electronic structure ab initio calculations, Nucl. Instrum. Meth. B, 157, 162. [CrossRef]
  • Montano, P.A., Schulzte, W., Tesche, B., Shenoy, G.K. and Morrison T.I. (1984) Exafs study of Ag particles isolated in solid argon, Phys. Rev., 30, 672. [CrossRef]
  • Wang, Z.L.,Petroski, J.L.,Green, T.C. and El-Sayed, M.A. (1998) Shape transformation and surface melting of cubic and tetrahedral Platinum nanocrystals, J. Phys. Chem. B, 32, 6145. [CrossRef]
  • Vaarkamp, M.,Miller, J.T.,Modica, F.S. and Koningsberger, D.C. (1996) On the relation between particle morphology, structure of the metal-support Interface, and catalytic properties of Pt/-Al2O3, J. Catal. 163, 294. [CrossRef]
  • Pandya, K.I.,Heald, S.M.,Hriljac, J.A.,Petrakis, L. and Fraissard, J. (1996) Characterization by EXAFS, NMR, and other techniques of Pt/NaY Zeolite at industrially relevant low concentration of Platinum, J. Phys. Chem. B, 100, 5070. [CrossRef]
  • Brown, W. and King, D.A. (2000) NO chemisorption and reactions on metal surfaces: a new perspective, J. Phys. Chem. B. 104, 2578. [CrossRef]
  • Schneider, S.,Bazin, D.,Garin, F.,Maire, G.,Dexpert, H.,Meunier, G.,Noirot, R. and Capelle, M. (1999) NO reaction over nanometer scale platinum clusters deposited on Formula -alumina: an XAS study, Appl. Catal., 189, 39. [CrossRef] [MathSciNet]
  • Loof, P.,Stenbom, B.,Norden, H. and Kasemo, B. (1993) Rapid Sintering in NO of Nanometer-Sized Pt Particles on small g-Al2O3 Observed by CO Temperature-Programmed Desorption and Transmission Electron Microscopy, J. Catal., 44, 60. [CrossRef]
  • Wang, X.,Sigmon, S.M.,Spivey, J.J. and Lamb, H.H. (2004) Support and particle size effects on direct NO decomposition over platinum, Catal. Today, 96, 11. [CrossRef]
  • Hashimoto, T., Hayashi, H., Udagawa, Y. and Ueno, A. (1995) NO induecd morphology changes by Xafs study, Physica B, 208/209, 683.
  • Campbell, T.,Dent, A.J.,Diaz-Moreno, S.,Evans, J.,Fiddy, S.G.,Newton, M.A. and Turin, S. (2002) Susceptibility of a heterogeneous catalyst, Rh/Al2O3, to rapid structural change by exposure to NO, Chem. Commum., 30, 304-305. [CrossRef]
  • Krause, K.R., and Schmidt, L.D. (1993) Microstructural changes and volatilization of Rh and Rh/Ce on SiO2 and Al2O3 in NO + CO, J. Catal., 140, 424. [CrossRef]
  • Wögerbauer, C.,Maciejewski, M. and Baiker, A. (2002) Structure Sensitivity of NO Reduction over Iridium Catalysts in HC–SCR, J. Catal., 205, 157. [CrossRef]
  • Haq, S.,Carew, A. and Raval, R. (2004) Nitric oxide reduction by Cu nanoclusters supported on thin Al2O3 films, J.Catal., 221, 204. [CrossRef] [MathSciNet]
  • Ramsier, R.D., Gao, Q., NeergaardWaltenburg, H.,Lee, K.W.,Nooij, O.W.,Lefferts, L. and Yates, J.T. (1994) NO adsorption and thermal behavior on Pd surfaces. A detailed comparative study, Surf. Sci., 320, 209. [CrossRef]
  • Sugai, S.,Watanabe, H.,Kioka, T.,Miki, H. and Kawasaki, K. (1991) Chemisorption of NO on Pd(100), (111) and (110) surfaces studied by AES, UPS and XPS, Surf. Sci., 259, 109. [CrossRef] [MathSciNet]
  • Sharpe, R.G. and Bowker, M. (1996) The adsorption and decomposition of NO on Pd(110), Surf. Sci., 360, 21. [CrossRef]
  • Nakamura, I.,Fujitani, T. and Hamada, H. (2002) Adsorption and decomposition of NO on Pd surfaces, Surf. Sci., 514, 409. [CrossRef]
  • HøjrupHansen, K.,Sljivananin, Z.,Laesgsgaard, E.,Besenbacher, F. and Stensgaardet, I. (2002) Adsorption of O2 and NO on Pd nanocrystals supported on Al2O3/NiAl(110): overlayer and edge structures, Surf. Sci., 505, 25. [CrossRef]
  • Garcia-Cortès, J.M., Pérez-Ramirez, J., Rouzaud, J.N., Vaccaro, A.R., Illàn-Gémez, M.J. and Salinas-Martinez de Lecea, C. (2003) On the structure sensitivity of deNOx HCSCR over Pt-beta catalysts, J. Catal., 218, 111. [CrossRef]
  • Barbier, J., Chollier, M.J. and Epron, F. (1997) In “Catalysis by Metals” Renouprez, A.J. and Jobic, H. (Eds.), EDP Sciences-Springer.
  • Barbier, J. (1992) Redox reactions in the tailoring of bimetallic catalysts in Advances in Catalyst Preparation, Catalytica Studies Division, Mountain View, California.
  • Derosa, P.A.,Seminario, J.M. and Balbuena, P.B. (2001) Properties of Small Bimetallic Ni-Cu Clusters, J. Phys. Chem. A, 105, 7917. [CrossRef]
  • Tréglia, G.,Legrand, B.,Ducastelle, F.,Saúl, A.,Gallis, C.,Meunier, I.,Mottet, C. and Senhaji, A. (1999) Alloy surfaces: segregation, reconstruction and phase transitions, Comp. Mater. Sci., 15, 196. [CrossRef]
  • Khoutami, A.,Legrand, B.,Mottet, C. and Tréglia, G. (1994) On the influence of topology on the energy profile in metallic Pd clusters, Surf. Sci., 307-309, 735. [CrossRef]
  • Bazin, D.,Mottet, C. and Tréglia, G. (2000) New opportunities to understand heterogeneous catalysis processes through synchrotron radiation studies and theoretical calculations of density of states: The case of nanometer scale bimetallic particles, Appl. Catal. A-Gen., 200, 47. [CrossRef]
  • Garcia-Gutierrez, D.I.,Gutierrez-Wing, C.E.,Giovanetti, L.E.,Ramallo-Lopez, J.M.,Requejo, F.G. and Jose-Yacaman, M. (2005) Temperature Effect on the Synthesis of Au-Pt Bimetallic Nanoparticles, J. Phys. Chem. B, 109, 3813. [CrossRef] [PubMed]
  • Nutt, M.O.,Hughes, J.B. and Wong, M.S. (2005) Designing Pd on Au bimetallic nanoparticles catalysts for trichloroethene hydrodechlorination, Environ. Sci. Technol., 39, 1346-1353. [CrossRef] [PubMed]
  • Borgna, A.,Anderson, B.G.,Saib, A.M.,Bluhm, H.,Havecker, M.,Knop-Gericke, A.,Kuiper, A.E.T.,Tamminga, Y. and Niemantsverdriet, J.W. (2004) Pt-Co/SiO2 Bimetallic Planar Model Catalysts for Selective Hydrogenation of Crotonaldehyde, J. Phys. Chem. B, 108, 7905. [CrossRef]
  • Renouprez, A.,Faudon, J.F.,Massardier, J.,Rousset, J.L.,Delichère, L. and Bergeret, G. (1997) Properties of supported PdNi catalysts prepared by coexchange and organometallic hemistry, J. Catal., 170, 181. [CrossRef]
  • Zhu, L.,Liang, K.S.,Zhang, B.,Bradley, J.S. and DePristo, A.E. (1997) Bimetallic PdCu catalysts: X-ray diffraction and theoretical modeling studies, J. Catal., 167, 412. [CrossRef]
  • Shen, J., Hill, J.H., Watve, R.M., Spiewak, B.E. and Dumesic, J.A. (1999) Microcalorimetric, infrared spectroscopic, and DFT studies of ethylene adsorption on Pt/SiO2 and Pt-Sn/SiO2 catalysts, J. Phys. Chem. B, 103, 3923.
  • Hill, J.M.,Shen, J.,Watwe, R.M. and Dumesic, J.A. (2000) Microcalorimetric, infrared spectroscopic, and DFT studies of ethylene adsorption on Pd and Pd/Sn, Catal. Langmuir, 16, 2213. [CrossRef]
  • Deutsch, S.E.,Miller, J.T.,Tomoshige, K.,Iwasawa, Y.,Weber, W.A. and Gates, B.C. (1996) Supported Ir and Pt Clusters: Reactivity with oxygen investigated by extended Xray absorption fine structure spectroscopy, J. Phys. Chem. B, 100, 13408. [CrossRef]
  • Reifsnyder, S.N.,Otten, M.M.,Sayers, D.E. and Lamb, H. (1997) Hydrogen chemisorption on Silica-supported Pt clusters: In situ X-ray absorption spectroscopy, J. Phys. Chem., 101, 4972. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.