Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 61, Number 5, September-October 2006
Page(s) 677 - 689
DOI https://doi.org/10.2516/ogst:2006006
Published online 01 January 2007
  • Somorjai, G.A. (2004) On the Move, Nature, 430, 730. [CrossRef] [PubMed] [Google Scholar]
  • Friedel, J. (1978) Physics of Metals, Cambridge University Press, Cambridge. [Google Scholar]
  • Desjonqueres, M.C. and Spanjaard, D. (1998) Concepts in Surface Physics, Springer-Verlag, Berlin. [Google Scholar]
  • Sinfelt, J. (2002) Role of surface science in catalysis. Surf. Sci., 500, 923. [CrossRef] [Google Scholar]
  • Zaera, F. (2001) Probing catalytic reactions at surfaces, Prog. Surf. Sci., 69, 1. [CrossRef] [Google Scholar]
  • Thomas, J.M. and Thomas, W.J., (1997) Principles and Practice of Heterogeneous Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. [Google Scholar]
  • Iwasawa, Y. (2003) In situ characterization of supported metal catalysts and model surfaces by time-resolved and three-dimensional XAFS techniques, J. Catal., 216, 165. [CrossRef] [Google Scholar]
  • Somorjai, G.A. and McCrea, K. (2001) Roadmap for catalysis science in the 21st century: a personal view of building the future on past and present accomplishments. Appl. Catal. A-Gen., 222, 3. [CrossRef] [Google Scholar]
  • Gates, B.C. (2000) Supported nanostructured catalysts: Metal complexes and metal clusters. J. Mol. Catal. A-Chem., 163, 55. [CrossRef] [Google Scholar]
  • Russell, A.E. and Rose, A. (2004) X-ray absorption spectroscopy of low temperature fuel cell catalysts, Chem. Rev., 104, 4613. [CrossRef] [PubMed] [Google Scholar]
  • Pârvulescu, V.I.,Grange, P. and Delmon, B. (1998) Catalytic removal of NO. Catal. Today, 46, 233. [CrossRef] [Google Scholar]
  • Garin, F. (2001) Environmental catalysis, Appl. Catal. A-Gen., 222, 183. [CrossRef] [Google Scholar]
  • Dry, M.E. (1981) The Fischer-Tropsch Synthesis in Catalysis Sciences and Technology, Anderson, J.R. and Boudart, M., (Eds.) 1, Springer Verlag, Berlin, 159. [Google Scholar]
  • Van Wechem, V.M.H. and Senden, M.M.G., (1994) Conversion of natural gas to transportation fuels via the Shell Middle Distillate Process, Stud. Surf. Sci. Catal., 81, 43. [Google Scholar]
  • Bazin, D.,Mottet, C.,Tréglia, G. and Lynch, J. (2000) New trends in heterogeneous catalysis processes on metallic clusters from synchrotron radiation and theoretical studies, Appl. Surf. Sci. 164, 140. [CrossRef] [Google Scholar]
  • Bazin, D. (2002) Solid state concepts to understand catalysis using nanoscale metallic particles, Top. Catal., 18, 79. [CrossRef] [Google Scholar]
  • Bazin, D. (2003) Solid State Physics and Synchrotron Radiation Techniques to Understand Heterogeneous Catalysis in nanotechnology, Ed. G.A. Somorjai, S. Hermans, B. Zhou, Ed. kluwer. [Google Scholar]
  • Ino, A. (1969) Stability of multiply-twinned particles J. Phys. Soc. Jpn, 27, 941. [Google Scholar]
  • Wulff, G.V. (1901) Zur frage der Geschwindigkeit des Wachstums und der Auflosung der Krystalflachen, Z. Krystallogr., 34, 449. [Google Scholar]
  • Pesant, L., Matta, J., Garin, F., Ledoux, M.J., Bernhardt, P., Pham, C. and Pham-Huu C. (2004) A high-performance Pt/-SiC catalyst for catalytic combustion of model carbon particles (CPs). Appl. Catal. A-Gen., 266, 21. [CrossRef] [MathSciNet] [Google Scholar]
  • Nohair, B.,Especel, C.,Marécot, P.,Montassier, C.,Hoang, L.C., and Barbier, J. (2004) Selective hydrogenation of sunflower oil over supported precious metals. C. R. Acad. Sci. II C, 7, 113. [Google Scholar]
  • Henry, C. (2000) Catalytic activity of supported nanometersized metal clusters, Appl. Surf. Sci., 164, 252. [CrossRef] [Google Scholar]
  • Alvarado, P., Dorantes-Davila, J.L. and Pastor G.M. (1998) Magnetic properties of 3d transition-metal nanostructures: Cr and V clusters embedded in bulk Fe, Phys. Rev. B, 58, 12116. [CrossRef] [Google Scholar]
  • Reddy, B.V.,Khanna, S.N. and Jena, P. (1999) Structure and magnetic ordering in Cr8 and Cr13 clusters, Phys. Rev. B 60, 15598. [CrossRef] [Google Scholar]
  • Oda, T.,Pasquarello, A. and Car, R. (1998) Fully unconstrained approach to noncollinear magnetism: Application to small Fe clusters, Phys. Rev. Lett., 80, 3622. [CrossRef] [Google Scholar]
  • Guirado-Lopez, R. (2001) Magnetic anisotropy of fcc transition-metal clusters: Role of surface relaxation, Phys. Rev. B, 63, 174420. [CrossRef] [Google Scholar]
  • Calleja, M.,Rey, C.,Alemany, M.M.G.,Gallego, L.J.Ordejon, P.,Sanchez-Portal, D.,Artacho, E. and Soler, J.M. (1999) Self-consistent density-functional calculations of the geometries, electronic structures, and magnetic moments of Ni-Al clusters, Phys. Rev. B, 60, 2020. [CrossRef] [Google Scholar]
  • Mottet, C.Tréglia, G. and Legrand, B. (1997) New magic numbers in metallic clusters: an unexpected metal dependence, Surf. Sci. Lett., 383, L719. [CrossRef] [Google Scholar]
  • Guirado-Lopez, R.,Desjonqueres, M.C. and Spanjaard, D. (1999) Electronic and magnetic structure in 4d transition metal clusters, Appl. Surf. Sci., 144, 663. [CrossRef] [Google Scholar]
  • Barreteau, C.,Spanjaard, D. and Desjonqueres, M.C. (1999) Electronic structure and energetics of transition metal surfaces and clusters from a new spd tight-binding method, Surf. Sci., 433, 751. [CrossRef] [Google Scholar]
  • Guirado-Lopez, R.,Desjonqueres, M.C.,Spanjaard, D. and Aguilera-Granja, F. (1998) Electronic and geometrical effects on the magnetism of small RuN clusters, J. Magn. Magn. Mat., 186, 214. [CrossRef] [Google Scholar]
  • Mottet, C.,Tréglia, G. and Legrand, B. (1996) Electronic structure of Pd cluster in the tight-binding approximation: influence of spd hybridization, Surf. Sci., 352, 675. [CrossRef] [Google Scholar]
  • Khoutami, A. (1993) PhD, University of Paris XI. [Google Scholar]
  • Car, R. and Parrinello, M. (1985) Unified Approach for Molecular Dynamics and Density-Functional Theory, Phys. Rev. Lett., 55, 2471. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Hall, B.D.,Flueli, M.,Monot, R. and Borel, J.P. (1991) Multiply twinned structures in unsupported ultrafine silver particles observed by electron diffraction, Phys. Rev. B, 43, 3906. [CrossRef] [Google Scholar]
  • Pinto, A., Pennisi, A.R., Faraci, G., D'agostino, G.,Mobilio, S. and Boscherini, F. (1995) Evidence for truncated octahedral structures in supported gold clusters, Phys. Rev. B, 51, 5315. [CrossRef] [Google Scholar]
  • Apai, G.,Hamilton, J.F.,Stohr, J. and Thompson, A. (1979) Exafs of small Cu and Ni clusters: Binding-energy and bondlength changes with cluster size, Phys. Rev. Lett., 13, 165. [CrossRef] [Google Scholar]
  • Moraweck, B.,Clugnet, G. and Renouprez, A.J. (1979) Contraction and relaxation of interatomic distances in small platinum particles from extended X-ray absorption fine structure (EXAFS) spectroscopy, Surf. Sci., 81, L631. [CrossRef] [Google Scholar]
  • Vervish, W.,Mottet, C. and Goniakowski, J. (2002) Theoretical study of the atomic structure of Pd nanoclusters deposited on a MgO(100) surface, Phys. Rev. B, 65, 245411. [CrossRef] [Google Scholar]
  • Mottet, C.,Goniakowski, J.,Baletto, F.,Ferrando, R. and Tréglia, G. (2004) Modeling free and supported metalic nanoclusters: Structure and dynamics, Phase Transit., 77, 101. [CrossRef] [Google Scholar]
  • Lodziana, Z. and Nørskov, J.K. (2002) Interaction of Pd with steps on Al2O3 (0001), Surf. Sci., 518, L577. [CrossRef] [Google Scholar]
  • Prevot, G. and Henry, C.R. (2002) Microkinetic modeling of the CO + NO reaction on Pd/MgO particle, J. Phys. Chem. B, 106, 12191. [CrossRef] [Google Scholar]
  • Sayers, D.A.,Lytle, F.W. and Stern, E.A. (1970) Advances in X-ray Analysis, Ed. Plenum, New-York, 13, 1970. [Google Scholar]
  • Bazin, D.,Sayers, D.,Rehr, J.,Mottet, C. (1997) Numerical simulation of the Pt LIII edge white line relative to nanometer scale clusters. J. Phys. Chem., 100, 5332. [CrossRef] [Google Scholar]
  • Bazin, D.,Rehr, J.J. (2003) Limits and advantages of X-ray absorption near edge structure for nanometer scale metallic clusters, J. Phys. Chem. B 107, 12398. [CrossRef] [Google Scholar]
  • Bazin, D.,Lynch, J.,Ramos-Fernandez, M. (2003) Xas and Awaxs: Two basic tools in heterogeneous catalysis, Oil Gas Sci. Technol., 58, 683. [CrossRef] [EDP Sciences] [Google Scholar]
  • Clausen, B.S.,Grabaek, L.,Topsoe, H.,Hansen, L.B.,Stoltze, P.,Norskov, J.K. and Nielsen, O.H. (1993) A new procedure for particle size determination by EXAFS based on molecular dynamics simulations, J. Catal., 141, 368. [CrossRef] [Google Scholar]
  • Ramallo-López, J.M.,Requejo, F.G.,Craievich, A.F.,Wei, J.,Avalos-Borja, M. and Iglesia, E. (2005) Complementary methods for cluster size distribution measurements: supported platinum nanoclusters in methane reforming catalysts, J. Mol. Catal. A-Chem., 228, 299. [CrossRef] [Google Scholar]
  • Womes, M., Cholley, T., Le Peltier, F., Morin, S., Didillon, B., and Szydlowski-Schildknecht, N. (2005) Study of the reaction mechanisms between Pt(acac)2 and alumina surface sites: Application to a new refilling technique for the controlled variation of the particle size of Pt/Al2O3 catalysts, Appl. Catal. A-Gen., In Press. [Google Scholar]
  • Jacobs, G., Ghadiali, F., Pisanu, A., Borgna, A., Alvarez, W.E. and Resasco, D.E (1999) Characterization of the morphology of Pt clusters incorporated in a KL zeolite by vapor phase and incipient wetness impregnation. Influence of Pt particle morphology on aromatization activity and deactivation, Appl. Catal. A-Gen., 188, 79. [Google Scholar]
  • Frenkel, A.I.,Hills, C.W., and Nuzzo, R.G. (2001) A view from the inside: Complexity in the Atomic Scale Ordering of Supported Metal Nanoparticles, J. Phys. Chem. B., 105, 12689. [CrossRef] [Google Scholar]
  • Chao, K.J., and We, A.C. (2001) Characterization of heterogeneous catalysts by X-ray absorption spectroscopy, J. Electron Spectroscopy and Related Phenomena, 119, 175. [CrossRef] [Google Scholar]
  • Stakheev, A.Y. and Kustov, L.M. (1999) Effects of the support on the morphology and electronic properties of supported metal clusters: modern concepts and progress in 1990s, Appl. Catal. A-Gen., 188, 3. [CrossRef] [Google Scholar]
  • Bazin, D., Sayers, D., Rehr, J. (1997) Comparison between Xas, Awaxs, Asaxs & Dafs applied to nanometer scale metallic clusters, J. Phys. Chem., 101, 11040. [Google Scholar]
  • Lynch, J. (2002), Development of structural characterisation tools for catalysts. Oil Gas Sci. Technol., 57, 281. [Google Scholar]
  • Grunwaldt, J.D.,Caravati, M.,Hannemann, S. and Baiker, A. (2004) X-ray absorption spectroscopy under reaction conditions: suitability of different reaction cells for combined catalyst characterization and time-resolved studies, Phys. Chem. Chem. Phys., 6, 3037 [CrossRef] [Google Scholar]
  • Shih, C.C. and Chang, J.R. (2005) Genesis and growth of platinum subnano-particles on activated-carbon characterized by X-ray absorption spectroscopy: effects of preparation conditions, Mater. Chem. Phys., 92, 89-97. [CrossRef] [Google Scholar]
  • Yao, N.,Pinckney, C.,Lim, S.,Pak, C. and Haller, G.L. (2001) Synthesis and characterization of Pt/MCM-41 catalysts, Micropor. Mesopor. Mat., 44-45, 377. [CrossRef] [Google Scholar]
  • Chen, Y.,Ciuparu, D.,Lim, S.,Yang, Y.,Haller, G.L. and Pfefferla, L. (2004) Synthesis of uniform diameter single-wall carbon nanotubes in Co-MCM-41: effects of the catalyst prereduction and nanotube growth temperatures, J. Catal., 225, 453. [CrossRef] [Google Scholar]
  • Dou, D.,Liu, D.J.,Williamson, W.B.,Kharas, K.C. and Robota, H.J. (2001) Structure and chemical properties of Pt nitrate and application in three-way automotive emission catalysts, Appl. Catal. B-Environ., 30, 11. [CrossRef] [Google Scholar]
  • Dal Santo, V., Dossi, C., Recchia, S., Colavita, P.E., Vlaic, G. and Psaro, R. (2002) Carbon tetrachloride hydrodechlorination with organometallics-based Pt and Pd catalysts on MgO, J. Mol. Catal. A-Chem., 182-183, 157. [Google Scholar]
  • Benfield, R.E.,Grandjean, D.,Dore, J.C.,Esfahanian, H.,Wu, Z.,Kröll, M.,Geerkens, M. and Schmid, G. (2004) Structure of assemblies of metal nanowires in mesoporous alumina membranes studied by EXAFS, XANES, X-ray diffraction and SAXS, Faraday Discuss., 125, 327. [CrossRef] [PubMed] [Google Scholar]
  • Yoshitake, H. and Iwasawa, Y. (1992) Electronic metal support interaction in platinum catalysts under deuterium-ethene reaction conditions and the microscopic nature of the active sites, J. Phys. Chem. B, 96, 1329. [CrossRef] [Google Scholar]
  • Bazin, D.,Dexpert, H.,Guyot-Sionnest, N.S.,Bournonville, J.P. and Lynch, J. (1989) Exafs characterization of reforming catalysts: examples of recent applications, J. Chim. Phys., 7, 86. [Google Scholar]
  • Asakura, K.,Chun, W.J.,Shirarai, M.,Tomishige, K. and Iwasawa, Y. (1997) In-situ polarization-dependent totalreflection fluorescence XAFS studies on the structure Transformation of Pt Clusters on Al2O3(0001), J. Phys. Chem. B, 101, 5549. [CrossRef] [Google Scholar]
  • Yamauchi, R.,Gunji, I.,Endou, A.,Yin, X.,Kubo, M.,Chatterjee, A. and Miyamoto, A. (1998) Electronic and structural features of Pd3 cluster on MgO(100) surface cluster, Appl. Surf. Sci., 130, 572. [CrossRef] [Google Scholar]
  • Lopez, N.,Illas, F. and Pacchioni, G. (1999) Electronic effects in the activation of supported metal clusters: Density functional theory. study of H2 dissociation on Cu/SiO2, J. Phys. Chem. B, 103, 1712. [CrossRef] [Google Scholar]
  • Kantorovich, L.,Shluger, A.,Günster, J.,Stultz, J.,Krischok, S.,Goodman, D.W.,Stracke, P., and Kempter, V. (1999) Mg clusters on MgO surfaces: characterization by MIES and electronic structure ab initio calculations, Nucl. Instrum. Meth. B, 157, 162. [CrossRef] [Google Scholar]
  • Montano, P.A., Schulzte, W., Tesche, B., Shenoy, G.K. and Morrison T.I. (1984) Exafs study of Ag particles isolated in solid argon, Phys. Rev., 30, 672. [CrossRef] [Google Scholar]
  • Wang, Z.L.,Petroski, J.L.,Green, T.C. and El-Sayed, M.A. (1998) Shape transformation and surface melting of cubic and tetrahedral Platinum nanocrystals, J. Phys. Chem. B, 32, 6145. [CrossRef] [Google Scholar]
  • Vaarkamp, M.,Miller, J.T.,Modica, F.S. and Koningsberger, D.C. (1996) On the relation between particle morphology, structure of the metal-support Interface, and catalytic properties of Pt/-Al2O3, J. Catal. 163, 294. [CrossRef] [Google Scholar]
  • Pandya, K.I.,Heald, S.M.,Hriljac, J.A.,Petrakis, L. and Fraissard, J. (1996) Characterization by EXAFS, NMR, and other techniques of Pt/NaY Zeolite at industrially relevant low concentration of Platinum, J. Phys. Chem. B, 100, 5070. [CrossRef] [Google Scholar]
  • Brown, W. and King, D.A. (2000) NO chemisorption and reactions on metal surfaces: a new perspective, J. Phys. Chem. B. 104, 2578. [CrossRef] [Google Scholar]
  • Schneider, S.,Bazin, D.,Garin, F.,Maire, G.,Dexpert, H.,Meunier, G.,Noirot, R. and Capelle, M. (1999) NO reaction over nanometer scale platinum clusters deposited on Formula -alumina: an XAS study, Appl. Catal., 189, 39. [CrossRef] [MathSciNet] [Google Scholar]
  • Loof, P.,Stenbom, B.,Norden, H. and Kasemo, B. (1993) Rapid Sintering in NO of Nanometer-Sized Pt Particles on small g-Al2O3 Observed by CO Temperature-Programmed Desorption and Transmission Electron Microscopy, J. Catal., 44, 60. [CrossRef] [Google Scholar]
  • Wang, X.,Sigmon, S.M.,Spivey, J.J. and Lamb, H.H. (2004) Support and particle size effects on direct NO decomposition over platinum, Catal. Today, 96, 11. [CrossRef] [Google Scholar]
  • Hashimoto, T., Hayashi, H., Udagawa, Y. and Ueno, A. (1995) NO induecd morphology changes by Xafs study, Physica B, 208/209, 683. [Google Scholar]
  • Campbell, T.,Dent, A.J.,Diaz-Moreno, S.,Evans, J.,Fiddy, S.G.,Newton, M.A. and Turin, S. (2002) Susceptibility of a heterogeneous catalyst, Rh/Al2O3, to rapid structural change by exposure to NO, Chem. Commum., 30, 304-305. [CrossRef] [Google Scholar]
  • Krause, K.R., and Schmidt, L.D. (1993) Microstructural changes and volatilization of Rh and Rh/Ce on SiO2 and Al2O3 in NO + CO, J. Catal., 140, 424. [CrossRef] [Google Scholar]
  • Wögerbauer, C.,Maciejewski, M. and Baiker, A. (2002) Structure Sensitivity of NO Reduction over Iridium Catalysts in HC–SCR, J. Catal., 205, 157. [CrossRef] [Google Scholar]
  • Haq, S.,Carew, A. and Raval, R. (2004) Nitric oxide reduction by Cu nanoclusters supported on thin Al2O3 films, J.Catal., 221, 204. [CrossRef] [MathSciNet] [Google Scholar]
  • Ramsier, R.D., Gao, Q., NeergaardWaltenburg, H.,Lee, K.W.,Nooij, O.W.,Lefferts, L. and Yates, J.T. (1994) NO adsorption and thermal behavior on Pd surfaces. A detailed comparative study, Surf. Sci., 320, 209. [CrossRef] [Google Scholar]
  • Sugai, S.,Watanabe, H.,Kioka, T.,Miki, H. and Kawasaki, K. (1991) Chemisorption of NO on Pd(100), (111) and (110) surfaces studied by AES, UPS and XPS, Surf. Sci., 259, 109. [CrossRef] [MathSciNet] [Google Scholar]
  • Sharpe, R.G. and Bowker, M. (1996) The adsorption and decomposition of NO on Pd(110), Surf. Sci., 360, 21. [CrossRef] [Google Scholar]
  • Nakamura, I.,Fujitani, T. and Hamada, H. (2002) Adsorption and decomposition of NO on Pd surfaces, Surf. Sci., 514, 409. [CrossRef] [Google Scholar]
  • HøjrupHansen, K.,Sljivananin, Z.,Laesgsgaard, E.,Besenbacher, F. and Stensgaardet, I. (2002) Adsorption of O2 and NO on Pd nanocrystals supported on Al2O3/NiAl(110): overlayer and edge structures, Surf. Sci., 505, 25. [CrossRef] [Google Scholar]
  • Garcia-Cortès, J.M., Pérez-Ramirez, J., Rouzaud, J.N., Vaccaro, A.R., Illàn-Gémez, M.J. and Salinas-Martinez de Lecea, C. (2003) On the structure sensitivity of deNOx HCSCR over Pt-beta catalysts, J. Catal., 218, 111. [CrossRef] [Google Scholar]
  • Barbier, J., Chollier, M.J. and Epron, F. (1997) In “Catalysis by Metals” Renouprez, A.J. and Jobic, H. (Eds.), EDP Sciences-Springer. [Google Scholar]
  • Barbier, J. (1992) Redox reactions in the tailoring of bimetallic catalysts in Advances in Catalyst Preparation, Catalytica Studies Division, Mountain View, California. [Google Scholar]
  • Derosa, P.A.,Seminario, J.M. and Balbuena, P.B. (2001) Properties of Small Bimetallic Ni-Cu Clusters, J. Phys. Chem. A, 105, 7917. [CrossRef] [Google Scholar]
  • Tréglia, G.,Legrand, B.,Ducastelle, F.,Saúl, A.,Gallis, C.,Meunier, I.,Mottet, C. and Senhaji, A. (1999) Alloy surfaces: segregation, reconstruction and phase transitions, Comp. Mater. Sci., 15, 196. [CrossRef] [Google Scholar]
  • Khoutami, A.,Legrand, B.,Mottet, C. and Tréglia, G. (1994) On the influence of topology on the energy profile in metallic Pd clusters, Surf. Sci., 307-309, 735. [CrossRef] [Google Scholar]
  • Bazin, D.,Mottet, C. and Tréglia, G. (2000) New opportunities to understand heterogeneous catalysis processes through synchrotron radiation studies and theoretical calculations of density of states: The case of nanometer scale bimetallic particles, Appl. Catal. A-Gen., 200, 47. [CrossRef] [Google Scholar]
  • Garcia-Gutierrez, D.I.,Gutierrez-Wing, C.E.,Giovanetti, L.E.,Ramallo-Lopez, J.M.,Requejo, F.G. and Jose-Yacaman, M. (2005) Temperature Effect on the Synthesis of Au-Pt Bimetallic Nanoparticles, J. Phys. Chem. B, 109, 3813. [CrossRef] [PubMed] [Google Scholar]
  • Nutt, M.O.,Hughes, J.B. and Wong, M.S. (2005) Designing Pd on Au bimetallic nanoparticles catalysts for trichloroethene hydrodechlorination, Environ. Sci. Technol., 39, 1346-1353. [CrossRef] [PubMed] [Google Scholar]
  • Borgna, A.,Anderson, B.G.,Saib, A.M.,Bluhm, H.,Havecker, M.,Knop-Gericke, A.,Kuiper, A.E.T.,Tamminga, Y. and Niemantsverdriet, J.W. (2004) Pt-Co/SiO2 Bimetallic Planar Model Catalysts for Selective Hydrogenation of Crotonaldehyde, J. Phys. Chem. B, 108, 7905. [CrossRef] [Google Scholar]
  • Renouprez, A.,Faudon, J.F.,Massardier, J.,Rousset, J.L.,Delichère, L. and Bergeret, G. (1997) Properties of supported PdNi catalysts prepared by coexchange and organometallic hemistry, J. Catal., 170, 181. [CrossRef] [Google Scholar]
  • Zhu, L.,Liang, K.S.,Zhang, B.,Bradley, J.S. and DePristo, A.E. (1997) Bimetallic PdCu catalysts: X-ray diffraction and theoretical modeling studies, J. Catal., 167, 412. [CrossRef] [Google Scholar]
  • Shen, J., Hill, J.H., Watve, R.M., Spiewak, B.E. and Dumesic, J.A. (1999) Microcalorimetric, infrared spectroscopic, and DFT studies of ethylene adsorption on Pt/SiO2 and Pt-Sn/SiO2 catalysts, J. Phys. Chem. B, 103, 3923. [Google Scholar]
  • Hill, J.M.,Shen, J.,Watwe, R.M. and Dumesic, J.A. (2000) Microcalorimetric, infrared spectroscopic, and DFT studies of ethylene adsorption on Pd and Pd/Sn, Catal. Langmuir, 16, 2213. [CrossRef] [Google Scholar]
  • Deutsch, S.E.,Miller, J.T.,Tomoshige, K.,Iwasawa, Y.,Weber, W.A. and Gates, B.C. (1996) Supported Ir and Pt Clusters: Reactivity with oxygen investigated by extended Xray absorption fine structure spectroscopy, J. Phys. Chem. B, 100, 13408. [CrossRef] [Google Scholar]
  • Reifsnyder, S.N.,Otten, M.M.,Sayers, D.E. and Lamb, H. (1997) Hydrogen chemisorption on Silica-supported Pt clusters: In situ X-ray absorption spectroscopy, J. Phys. Chem., 101, 4972. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.