Open Access
Oil & Gas Science and Technology - Rev. IFP
Volume 61, Number 5, September-October 2006
Page(s) 691 - 703
Published online 01 January 2007
  • Kohse-Höinghaus K. and Jeffries J.B. (2002) Applied Combustion Diagnostics, Ed. Taylor & Francis, New York. [Google Scholar]
  • Bockhorn H. (1994) Soot Formation in Combustion - Mechanism and Models, Ed. Springer-Verlag, Berlin, Heidelberg. [Google Scholar]
  • Hansen J. and Nazarenko L. (2004) Soot climate forcing via snow and ice albedos, Proc. Natl. Acad. Sci. USA 101, 423-428. [CrossRef] [Google Scholar]
  • PopeIII C.A.,Burnet R.T.,Thun M.J.,Calle E.E.,Krewski D.,Ito K. and Thurston G.D. (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution, JAMA-J. Am. Med. Assoc. 6, 1132-1141. [Google Scholar]
  • Melton L.A. (1984) Soot diagnostics based on laser heating, Appl. Optics 23, 2201-2208. [CrossRef] [Google Scholar]
  • Westbrook C.K. and Dryer F.L. (1984) Chemical kinetic modeling of hydrocarbon combustion, Prog. Energ. Combust. 10, 1-57. [Google Scholar]
  • Leung K.M. and Lindstedt R.P. (1995) Detailed kinetic modeling of C1-C3 alkane diffusion flames, Combust. Flame 102, 129-160. [CrossRef] [Google Scholar]
  • Davis S.G. and Law C.K. (1998) Laminar flame speed and oxidation kinetics of iso-octane/air and n/heptane/air flames, Proc. Comb. Inst. 27, 521-528. [CrossRef] [Google Scholar]
  • Böhm H.,Lamprecht A.,Atakan B. and Kohse-Höinghaus K. (2000) Modelling of a fuel-rich premixed propene-oxygeneargon flame and comparison with experiments, Phys. Chem. Phys. 2, 4956-4961. [CrossRef] [Google Scholar]
  • Schneider-Kühnle Y. (2004) Experimentelle Untersuchung rußender Hochdruckflammen mit laserdiagnostischen Messmethoden, PhD Thesis, Stuttgart. [Google Scholar]
  • Will S.,Schraml S. and Leipertz A. (1995) Two-dimensional soot-particles sizing by time-resolved laser induced incandescence, Opt. Lett. 20, 2342-2344. [CrossRef] [PubMed] [Google Scholar]
  • Vander Wal R.,Ticich T.M. and Stephens A.B. (1999) Can soot primary particle size be determined using laser-induced incandescence, Combust. Flame 116, 291-296. [CrossRef] [Google Scholar]
  • Mewes B. and Seitzmann J.M. (1997) Soot volume fraction and. particle size measurements with laser induced incandescence, Appl. Optics 36, 709–730. [CrossRef] [Google Scholar]
  • Boiarcius C., Foucher F., Moreau B., Pajot O. and Mounaïm–Rousselle C. (2004) Simultaneous spatial and temporal resolved Laser-induced incandescence to study the soot particles formation, Proc. 12th International Symposium on Applications of Laser Techniques to Fluid Mechanics, isbon, Portugal. [Google Scholar]
  • Liu F.,Smallwood G.J. and Snelling D.R. (2004) Effects of primary particle diameter and aggregate size distribution on the temperature of soot particles heated by pulsed lasers, J. Quant. Spectrosc. Ra. 93, 301-312. [CrossRef] [Google Scholar]
  • Krüger V.,Wahl C.,Hadef R.,Geigle K.P.,Stricker W. and Aigner M. (2005) Comparison of laser-induced incandescence method with scanning mobility particle sizer technique: the influence of probe sampling and laser heating to soot particle size distribution, J. Meas. Sci. Technol. 16, 1477-1486. [CrossRef] [Google Scholar]
  • Braun-Unkhoff M.,Chrysostomou A.,Frank P.,Gutheil E.Lückerath R. and Stricker W. (1998) Experimental and numerical study on soot formation in laminar high-pressure flames, Proc. Combust. Inst. 27, 1565-1572. [CrossRef] [Google Scholar]
  • Goeken D. and Johnson O. (2000) Runge-Kutta with higher order derivative approximations, Appl. Numer. Math. 34, 207-218. [CrossRef] [MathSciNet] [Google Scholar]
  • Santoro R.J. and Shaddix C.R. (2002) Laser-induced incandescence, in Applied Combustion Diagnostics: K. Kohse-Höinghaus, J.B. Jeffries (Eds.), Taylor & Francis, New York, 252-286. [Google Scholar]
  • Bouchardy P.,Collin G.,Magre P. and Péalat M. (1993) Thermométrie DRASC appliquée aux milieux en combustion, Oil Gas Sci. Technol. 48, 247-259. [Google Scholar]
  • Bengtsson P.E,Aldén M.,Kröll S. and Nilsson D. (1990) Vibrational CARS thermometry in sooty flames: quantitative evaluation of C2 absorption interference, Combust. Flame 82, 199-210. [CrossRef] [Google Scholar]
  • Geigle K.P.,Schneider-Kühnle Y.,Tsurikov M.S.,Hadef R.,Lückerath R.,Krüger V.,Stricker W. and Aigner M. (2005) Investigation of laminar pressurized flames for soot model validation using SV-CARS and LII, Proc. Combust. Inst. 30, 1645-1653 [CrossRef] [Google Scholar]
  • Glassman I. (1988), Soot formation in combustion processes, Proc. Combust. Inst. 22, 295-311. [Google Scholar]
  • Melton T.R.,Inal F.,Senkan S.M. (2000) The effects of equivalence ratio on the formation of polycyclic aromatic hydrocarbons and soot in premixed ethane flames, Combust. Flame 121, 671-678. [CrossRef] [Google Scholar]
  • Frenklach M.,Clary D.W.,Gardiner W.C. and Stein S.E. (1986) Effect of fuel structure on pathways to soot, Proc. Combust. Inst. 21, 1067-1076. [CrossRef] [Google Scholar]
  • Woods L.T. and Haynes B.S. (1991) Soot surface growth at active sites, Combust. Flame 85, 523-525. [CrossRef] [Google Scholar]
  • Frenklach M. (1996) On surface growth mechanism of soot particles, Proc. Combust. Inst. 26, 2285-2293. [CrossRef] [Google Scholar]
  • Mauss F.,Schäfer T. and Bockhorn H. (1994) Inception and growth of soot particles in dependence on the surrounding gas phase, Combust. Flame 99, 697-705. [CrossRef] [Google Scholar]
  • Choi M.Y. and Jensen K.A. (1998), Calibration and correction of laser-induced incandescence for soot volume fraction measurements, Combust. Flame 112, 485-491. [Google Scholar]
  • Snelling D.R., Liu F., Smallwood G.J. and Gülder Ö.L. (2000) Evaluation of the nanoscale heat and mass transfer model of LII: prediction of the excitation intensity, Proc. 34th National Heat Transfer Conference, paper NHTC2000-12132. [Google Scholar]
  • Smallwood G.J.,Snelling D.R.,Liu F. and Gülder Ö.L. (2001) Clouds over soot evaporation: errors in modelling laser induced incandescence of soot, J. Heat Transf. ASME 123, 814-818. [CrossRef] [Google Scholar]
  • Snelling D.R.,Liu F.,Smallwood G.J. and Gülder Ö.L. (2004) Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame, Combust. Flame 136, 180-190. [CrossRef] [Google Scholar]
  • Michelsen H.A. (2003) Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles, J. Chem. Phys. 118, 7012-7045. [CrossRef] [Google Scholar]
  • Filippov A.V. and Rosner D.E. (2000) Energy transfer between an aerosol particle and gas at high temperature ratios in the Knudsen transition regime, Int. J. Heat Mass Transf. 43, 127-138. [CrossRef] [Google Scholar]
  • Lehre T.,Bockhorn H.,Jungfleich B. and Schutz R. (2003) Development of a measuring technique for simultaneous in situ detection of nanoscaled particle size distributions and gas temperatures, Chemosphere 51, 1055-1066. [CrossRef] [PubMed] [Google Scholar]
  • Lehre T.,Jungfleisch B.,Suntz R. and Bockhorn H. (2003) Size distributions of nanoscaled particles and gas temperatures from time-resolved laser-induced-incandescence measurements, Appl. Optics 42, 2021-2030. [CrossRef] [Google Scholar]
  • Schraml S.,Dankers S.,Bader K.,Will S. and Leipertz A. (2000) Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII), Combust. Flame 120, 439-450. [CrossRef] [Google Scholar]
  • Haynes B.S. and Wagner H.Gg. (1982) The surface growth phenomenon in soot formation, Z. Phys. Chem. 133, 201-213. [CrossRef] [Google Scholar]
  • Mätzing H. and Wagner H.Gg. (1986) Proc. Comb. Inst. 21, 1047-1055. [CrossRef] [Google Scholar]
  • Tsurikov M.S.,Geigle K.P.,Krüger V.,Schneider-Kühnle Y.,Stricker W.,Lückerath R.,Hadef R.,Aigner M. (2005) Laser-based investigation of soot formation in laminar premixed flames at atmospheric and elevated pressures, Combust. Sci. Technol. 177-10, 1835-1862. [CrossRef] [Google Scholar]
  • Böhm H., Feldermann Chr.,Heidermann Th.,Jander H.,Lüers B. and Wagner H.Gg. (1992) Soot formation in premixed C2H4-air flames for pressures up to 100 bar, Proc. Combust. Inst. 24, 991-997. [CrossRef] [Google Scholar]
  • Du J. and Axelbaum R.L. (1995) The effect of flame structure on soot-particle inception in diffusion flames, Combust. Flame 100, 367-375. [CrossRef] [Google Scholar]
  • Maricq M.,Harris S.J. and Szente J. (2003) Soot size distributions in rich premixed ethylene flames, Combust. Flame 132, 328-342 [CrossRef] [Google Scholar]
  • Bönig M., Feldermann Chr.,Jander H.,Lüers B.,Rudolph G. and Wagner H.Gg. (1990) Soot formation in premixed C2H4 flat flames at elevated pressure, Proc. Combust. Inst. 23, 871-878. [Google Scholar]
  • Miller I.M. and Maahs H.G. (1997) High pressure flame system for pollution studies with results for methane diffusion flames, NASA TN D 8407. [Google Scholar]
  • Kock B.F. and Roth P. (2003) Two-Color TR-LII Applied to In-Cylinder Diesel Particle Sizing, European Combustion Meeting, Orléans, France. [Google Scholar]
  • Hofmann M.,Bessler W.G.,Schulz C. and Jander H. (2003) Laser-induced incandescence for soot diagnostics at high pressures, Appl. Optics 42, 2052-2062. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.