Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 60, Number 2, March-April 2005
Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Page(s) 249 - 258
DOI https://doi.org/10.2516/ogst:2005015
Published online 01 December 2006
  • Acker, J.G. and Bricker, O.P. (1992) The influence of pH on biotite dissolution and alteration kinetics at low temperature. Geochimica et Cosmochimica Acta, 56, 3073-3092. [CrossRef] [Google Scholar]
  • Ague, J.J. and Brimhall, G.H. (1989) Geochemical modelling of steady state fluid flow and chemical reaction during supergene enrichment of Porphyry Copper Deposits. Economic Geology, 84, 506-528. [CrossRef] [Google Scholar]
  • Bazin, B.,Brosse, E., and Sommer, F. (1997) Chemistry of oilfield brines in relation to diagenesis of reservoirs 1. Use of mineral stability fields to reconstruct in situ water composition. Example of the Mahakam basin. Marine and Petroleum Geology, 14, 5, 481-495. [CrossRef] [Google Scholar]
  • Blum, A.E. and Stillings, L.L. (1995) Feldspar dissolution kinetics. Chapter 7 of Chemical Weathering Rates of Silicate Minerals, White A. F. and Brantley S. L. (Eds.). Mineral Society of America, Washington DC., 31, 291-351. [Google Scholar]
  • Brantley, S.L. and Chen, Y. (1995) Chemical weathering rates of pyroxenes and amphiboles. Chapter 4 of Chemical Weathering Rates of Silicate Minerals, White A. F. and Brantley S. L. (Eds.). Mineral Society of America, Washington DC., 31, 119-172. [Google Scholar]
  • Brunauer, S.,Emmet, P.H., and Teller, E. (1938) Adsorption of gases in multimolecular layers. Journal of American Chemical Society, 60, 309-319. [CrossRef] [Google Scholar]
  • Chen, Y. and Brantley, S.L. (1998) Diopside and anthophyllite dissolution at 25º and 90º C and acid pH. Chemical Geology, 147, 233-248. [CrossRef] [Google Scholar]
  • Furrer, G., Zysset, M., and Schindler, P.W. (1993) Weathering kinetics of montmorillonite: Investigations in batch and mixedflow reactors. In: Geochemistry of clay-pore fluid interactions, Manning D.A. C. Hall, P. L., Hughes C. R. (Eds.), Campman & Hall, London, 243-262. [Google Scholar]
  • Goldbery, R. and Loughnan, F.C. (1970) Dawsonite and nordstrandite in the Permian Berry Formation of the Sydney Basin, New South Wales. American mineralogist, 55, 477-490. [Google Scholar]
  • Kalinowski, B.E.,Liermann, L.J.,Brantly, S.L., and Stryner, M. (1998) Dissolution kinetics and alteration of epidote in acidic solutions at 25ºC. Chemical Geology, 151, 1-4, 181-197. [CrossRef] [Google Scholar]
  • Kline, W.E. and Fogler, H.S. (1981) Dissolution kinetics: The nature of the particle attack of layered silicates in HF. Chemical Engineering Science, 36, 871-884. [CrossRef] [Google Scholar]
  • Kobayashi, I. (1996) Quaternary geology of the Echigo Plain, Niigata, Japan. The Quaternary Research - Journal of Japan Association for Quaternary Research, 35, 191-205. [Google Scholar]
  • Kobayashi, I. and Takano, O. (2002) Records of major and minor transgression and regression events in the Paleo-Sea of Japan during late Cenozoic. Revista Mexicana de Ciencias Geológicas, 19, 3, 226-234. [Google Scholar]
  • Kozaka, N. (1995) Étude expérimentale de l’interaction entre des solutions naturelles et des roches poreuses: contrôle géochimique et pétrophysique. Thèse, université Louis-Pasteur de Strasbourg. Lasaga, A.C. (1984) Chemical kinetics of water-rock interactions. Journal of Geophysical Research, 89, 4009-4025. [Google Scholar]
  • Lin, F.C. and Clemency, C.V. (1981) The kinetics of dissolution of muscovites at 25ºC and 1 atm CO2 partial pressure. Geochimica et Cosmochimica Acta, 45, 571-576. [CrossRef] [Google Scholar]
  • Loughnan, F.C. and Goldbery, R. (1972) Dawsonite and analcite in the Singleton Coal Measures of the Sydney Basin. American Mineralogist, 57, 1437-1447. [Google Scholar]
  • Mason, B. (1966) Principles of Geochemistry, 3rd Edition, John Wiley & Sons, Inc., New York. [Google Scholar]
  • May, H.M.,Acker, J.G.,Smyth, J.R.,Bricker, O.P., and Dyar, M.D. (1995) Aqueous dissolution of low-iron chlorite in dilute acid solutions at 25ºC. Clay Minerals Society Proceedings. Abstract, 32, 22. [Google Scholar]
  • Nagy, K.L. (1995) Dissolution and precipitation kinetics of sheet silicates. Chapter 5 of chemical weathering rates of silicate minerals, White A. F. and Brantley S. L. (Eds.). Mineral Society of America, Washington DC., 31, 173-233. [Google Scholar]
  • NEDO (New Energy and Industrial Technology Development Organisation) (2002) Development of technology of CO2 geological sequestration report. Annual Report 2001. [Google Scholar]
  • Ross, G.J. (1967) Kinetics of acid dissolution of an orthochlorite mineral. Canadian Journal of Chemistry, 45, 3031-3034. [CrossRef] [Google Scholar]
  • Schott, J.J.,Berner, R.A. and Sjoberg, E.L. (1981) Mechanism of pyroxene and amphibole weathering - I. Experimental studies of iron-free minerals. Geochimica et Cosmochimica Acta, 45, 2123-2135. [CrossRef] [Google Scholar]
  • Sekiyu Gijutsu Kyoukai (1993) Sekiyu Gijutsu Kyokai Exploration and Development of Hydrocarbon in Japan: Special edition for 60th anniversary of The Japanese Association for Petroleum Technology, The Japanese Association for Petroleum Technology. [Google Scholar]
  • Smith, J.W. and Milton, C. (1966) Dawsonite in the Green River Formation of Colorado. Economic Geology, 61, 1029-1042. [CrossRef] [Google Scholar]
  • Svensson, U. and Dreybrodt, W. (1992) Dissolution kinetics of natural calcite minerals in CO2 - water systems approaching calcite equilibrium. Chemical Geology, 100, 129-145. [CrossRef] [Google Scholar]
  • Tester, J.W.,Worley, G.W.,Robinson, B.A.,Grigsby, C.O., and Feerer, J.L. (1994) Correlating quartz dissolution kinetics in pure water from 25°C to 625°C. Geochimica et Cosmochimica Acta, 58, 2407-2420. [CrossRef] [Google Scholar]
  • Xu, T., Apps, J., and Pruess, K. (2001) Analysis of mineral trapping for CO2 disposal in deep aquifers. Lawrence Berkeley National Laboratory Report. LBNL-46992, Berkeley, California. [Google Scholar]
  • Wolery, T.J. (1992) EQ3NR, A computer program for geochemical aqueous speciation-solubility calculations: Theoretical manual, user's guide, and related documentation. (Version 7.0), UCRL-MA-110662-PT-III, Lawrence Livermore National Laboratory. [Google Scholar]
  • Wolery, T.J. and Daveler, S.A. (1992) EQ6, A computer program for reaction path modelling of aqueous geochemical systems: Theoretical manual, user's guide, and related documentation. (Version 7.0), UCRL-MA-110662-PT-IV, Lawrence Livermore National Laboratory. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.