Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 60, Number 2, March-April 2005
Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Page(s) 231 - 247
DOI https://doi.org/10.2516/ogst:2005014
Published online 01 December 2006
  • Air Liquide (1976) Encyclopédie des gaz, gas encyclopaedia, Elsevier, Amsterdam. [Google Scholar]
  • Bachu, S. (2002) Sequestration of CO2 in geological media in response to climatic change: road map for site selection using the transform of the geological space into CO2 phase space. Energy Conversion and Management, 43, 87-102. [CrossRef] [Google Scholar]
  • Bachu, S.,Gunter, W., and Perkins, E. (1994) Aquifer disposal of CO2: hydrodynamic and mineral trapping. Energy Conversion and Management, 35, 269-279. [CrossRef] [Google Scholar]
  • Brønsted, J. N. (1922) Studies on solubility. IV. The principle of the speci.c interaction of ions. Journal of the American Chemical Society, 44, 877-898. [CrossRef] [Google Scholar]
  • Carrayrou, J., Mos窠R., and Behra, P. (2002) Comparison of mass balance errors in operator-splitting procedures for reactive transport. Journal of Contaminant Hydrology, 68, 239-268. [CrossRef] [Google Scholar]
  • Duan, Z. and Sun, R. (2002) An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chemical Geology, 193, 257-271. [CrossRef] [Google Scholar]
  • Fein, J.B. and Walter, J.V. (1987) Calcite solubility in supercritical CO2-H2O .uids. Geochimica et Cosmochimica Acta, 51, 1665-1673. [CrossRef] [Google Scholar]
  • Gaus, I., Azaroual, M., and Czernichowski-Lauriol, I. (2003) Reactive transport modelling of dissolved CO2 in the cap rock base during CO2 sequestration (Sleipner site, North Sea). Second Annual Conference on Carbon Sequestration, may 5-8th, http://www.iku.sintef.no/projects/ IK23430000/Publications/Gaus etal CarbonSeqIIConf.pdf. [Google Scholar]
  • Gunter, W.,Perkins, E., and McCann, T. (1993) Aquifer disposal of CO2-rich gases: reaction design for added capacity. Energy Conversion and management, 34, 941-948. [CrossRef] [Google Scholar]
  • Gunter, W.,Wiwchar, B., and Perkins, E. (1997) Aquifer disposal of CO2-rich greenhouse gases: extension of the time scale of experiment for CO2-sequestering reactions by geochemical modelling. Mineralogy and Petrology, 59, 121-140. [CrossRef] [Google Scholar]
  • Helgeson, H. (1969) Thermodynamics of hydrothermal systems at elevated temperatures and pressures. American journal of science, 267, 729-804. [CrossRef] [Google Scholar]
  • Hundsdorfer, W. and Verwer, J.G. (1995) A note on splitting errors for advection–diffusion-reaction equation. Applied Numerical Mathematics, 18, 191-199. [CrossRef] [MathSciNet] [Google Scholar]
  • Johnson, J.W., Nitao, J.J., Steefel, C., and Knaus, K.G. (2001) Reactive Transport Modeling of Geologic CO2 Sequestration in Saline Aquifers; The In.uence of Intra-Aquifer Shales and the Relative Effectiveness of Structural, Solubility, and Mineral Trapping During Prograde and Retrograde Sequestration. First Annual Conference on Carbon Sequestration, may 14-17th, 2001, http://www.netl.doe.gov/publications/proceedings/ 01/carbon seq/P28.pdf [Google Scholar]
  • Joyce, D.B. and Holloway, J.R. (1993) An experimental determination of the thermodynamic properties of H2O-CO2- NaCl .uids at high pressures and temperatures. Geochimica et Cosmochimica Acta, 57, 733-746. [CrossRef] [Google Scholar]
  • Kaszuba, J.,Janecky, D., and Snow, M. (2003) Carbon dioxide reaction processes in a model brine aquifer at 200 C and 200 bars: implications for geologic sequestration of carbon. Applied Geochemistry, 18, 1065-1080. [CrossRef] [Google Scholar]
  • Lagneau, V. (2003) R2d2 – Reactive Transport and Water.ow on an Odd Dimension 2 grid, Notice technique et véri.cation. Technical ReportNo.LMH/RD/03/05, École desmines de Paris, Paris, http://www.cig.ensmp.fr/~lagneau/docr2d2.pdf. [Google Scholar]
  • Leitner, W. (2000) Homogeneous catalysts for application in supercritical carbon dioxide as a ’green’ solvent. Compte-rendu de l’Académie des sciences, 3 (special issue on ”Green Chemistry”), 595-600, Paris. [Google Scholar]
  • Li, Q.,Zhang, Z.,Zhong, C.,Liu, Y., and Zhou, Q. (2003) Solubility of solid solutes in supercritical carbon dioxide with and without cosolvents. Fluid Phase Equilibria, 207, 183-192. [CrossRef] [Google Scholar]
  • Lichtner, P.C. (1996) Continuum formulation of multicomponent- multiphase reactive transport, in Reactive transport in porous media, Lichtner, P.C., Steefel, C., and Oelkers, E.H. editors, Reviews in mineralogy, 34, Mineralogical Society of America, 1-81. [Google Scholar]
  • Pruess, K., García, J., Kovscek, T., Oldenburg, C., Rutqvist, J., Steefel, C., and Xu, T. (2002) Intercomparison of numerical simulation codes for geologic disposal of CO2 Technical report Lawrence Berkeley Laboratory report LBNL- 51813, report available at http://www-esd.lbl.gov/GEOSEQ/ code/pdfs/LBNL 51813.pdft. [Google Scholar]
  • Pruess, K.,García, J.,Kovscek, T.,Oldenburg, C.,Rutqvist, J.,Steefel, C., and Xu, T. (2004) Code intercomparison builds con- .dence in numerical simulation models for géologic disposal of CO2. Energy, 29, 1431-1444. [CrossRef] [Google Scholar]
  • Reichle, D., Houghton, J., Kane, B., and Ekmann, J. (1999) Carbon sequestration research and development. Technical Report, Of.ce of Science, Of.ce of Fossil Energy, U.S. Department of Energy, report available at http://www.ornl.gov/carbon sequestration/. [Google Scholar]
  • Rochelle, C., Pearce, J., and Holloway, S. (1999) The underground sequestration of carbon dioxide: containment by chemical reactions in the deep geosphere. In: Metcalfe, R., Rochelle, C. (Eds.), Chemical Containment of Waste in the Geosphere, special publication, The Geological Society of London, 157, 117-129. [Google Scholar]
  • Steefel, C. and Lasaga, A. (1994) A coupled model for transport of multiple chemical species and kinetic precipitation/ dissolution reactions with application to reactive .ow in single phase hydrothermal systems. American Journal of Science, 294, 529-592. [CrossRef] [Google Scholar]
  • Steefel, C. and MacQuarrie, K. (1996) Approaches to modeling of reactive transport in porous media, in Reactive transport in porous media, Lichtner, P., Steefel, C.., and Oelkers, E. editors, Reviews in mineralogy, 34, Mineralogical Society of America, 83-129. [Google Scholar]
  • van Cappellen, P. and Wang, Y. (1996) Cycling of iron and manganese in surface sediments: a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron and manganese. American Journal of Science, 296, 197-243. [CrossRef] [Google Scholar]
  • van der Lee, J. (1997) Modélisation du comportement géochimique et du transport des radionucléides. Ph.D. thesis,École nationale supérieure des mines de Paris. [Google Scholar]
  • van der Lee, J. (1998) Thermodynamic and mathematical concepts of Chess. Technical Report No.LHM/RD/98/39, École des mines de Paris, Paris, http://chess.ensmp.fr/download/ concepts.pdf. [Google Scholar]
  • van der Lee, J. and DeWindt, L. (2001) Present state and future directions of modeling of geochemistry in hydrogeological systems. Journal of Contaminant Hydrology, 47, 265-282. [CrossRef] [PubMed] [Google Scholar]
  • van der Lee, J., De Windt, L.,Lagneau, V. and Goblet, P. (2002) Presentation and application of the reactive transport code Hytec. Computational Methods in Water Resources, 1, 599-606. [Google Scholar]
  • van der Lee, J., De Windt, L.,Lagneau, V. and Goblet, P. (2003) Module-oriented modeling of reactive transport with hytec. Computers & Geosciences, 29, 265-275. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.