Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 60, Number 2, March-April 2005
Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Page(s) 307 - 318
DOI https://doi.org/10.2516/ogst:2005019
Published online 01 December 2006
  • Archie, G.E. (1942) The Electrical Resistivity Log as an Aid to Determining some Reservoir Characteristics. Transactions of the American Institute of Mining Engineers, 146, 54-61. [Google Scholar]
  • Bengaouer, A., Montarnal, P., Loth, L. and Gaombalet, J. (2003) ALLIANCES Project: Integration, Analysis and Design Software Environment for Nuclear Waste Storage and Disposal. Int. Conf. on Supercomputing in Nuclear Applications, 22-24 Sept. 2003, Paris, France. [Google Scholar]
  • Carman, P.C. (1937) Fluid Flow through Granular Beds. Trans. Inst. Chem. Eng., 15, 150-166. [Google Scholar]
  • Chilingar, G.V.,Main, R. and Sinnokrot, A. (1963) Relationship between Porosity, Permeability and Surface Area of Sediments. J. Sediment. Petrol., 33, 759-765. [CrossRef] [Google Scholar]
  • Chilingarian, G.V.,Torabzadeh, J.,Riecke, H.H.,Metghalchi, M. and Mazzullo, S.J. (1992) Interrelationships among Surface Area, Permeability, Porosity, Pore Size and Residual Water Saturation. Developments in Petroleum Science, 30, 379-397. [Google Scholar]
  • Cross, J.E. and Ewart, F.T. (1991) HATCHES - A Thermodynamic Database and Management System. Radiochimica Acta, 52/53, 421-422. [Google Scholar]
  • de Marsily, G. (1986) Quantitative Hydrogeology, Academic Press, London. [Google Scholar]
  • Giambalvo, E.R.,Steefel, C.I.,Fisher, A.T.,Rosenberg, N.D. and Wheat, C.G. (2002) Effect of Fluid-Sediment Reaction on Hydrothermal Fluxes of Major Elements, Eastern Flank of the Juan de Fuca Ridge. Geochim. Cosmochim. Acta, 66, 10, 1739-1757. [CrossRef] [Google Scholar]
  • Johnson, J.W., Nitao, J.J., Steefel, C. and Knaus, K.G. (2001) Reactive Transport Modeling of Geologic CO2 Sequestration in Saline Aquifers; The Influence of Intra-Aquifer Shales and the Relative Effectiveness of Structural, Solubility, and Mineral Trapping During Prograde and Retrograde Sequestration. First Annual Conference on Carbon Equestration, May 14-17th, 2001, http://www.netl.doe.gov/publications/proceedings/01/carbon_seq/ P28.pdf. [Google Scholar]
  • Lagneau, V. (2000) Influence des processus géochimiques sur le transport en milieu poreux; application au colmatage de barrières de confinement potentielles dans un stockage en formation géologique. Ph.D. Dissertation, École des mines de Paris, Fontainebleau, France. [Google Scholar]
  • Lagneau, V., Pipart, A. and Catalette, H. (2004a) Reactive Transport Modeling and Long Term Behavior of a CO2 Sequestration in Saline Aquifers. Oil and Gas Sci. Technol., this issue. [Google Scholar]
  • Lagneau, V., Trotignon L., Van der Lee, J. and Soreau, P. (2004b) Clogging of Porous Media due to Geochemical Reactions: Column Experiments and Numerical Simulations. Submitted to Water Resour. Res. [Google Scholar]
  • Le Gallo, Y., Bildstein, O. and Brosse, E. (1998), Modeling Diagenetic Changes in Reservoir Permeability, Porosity, and Mineral Compositions with Water Flow. In: Reactive Transport Modeling of Natural Systems, Steefel, C.I. and Van Cappellen, P. (eds.), J. Hydrology, 209, 366-387. [Google Scholar]
  • Lichtner, P.C. (1996) Continuum Formulation of MultiComponent- Multiphase Reactive Transport. In: Reactive Transport in Porous Media, Reviews in Mineralogy, 34, 1-81, Mineralogical Society of America. [Google Scholar]
  • Lide, D.R. Editor (1994) Handbook of Chemistry and Physics, 75th Edition, CRC Press, USA. [Google Scholar]
  • Morel, F.M.M. (1983) Principles of Aquatic Chemistry, Wiley- Interscience, New York, USA. [Google Scholar]
  • Mügler, C., Montarnal, P., Dimier, A. and Trotignon, L. (2004) Reactive Transport Modelling in the Context of a Software Platform. Int. Conf. on Computational Methods in Water Resources, 13-17 June 2004, Chapel Hill, USA. [Google Scholar]
  • Sall籬 J.,Thovert, J.F. and Adler, P.M. (1993a) Deposition in Porous Media and Clogging. Chemical Engineering science, 48, 16, 2839-2858. [CrossRef] [Google Scholar]
  • Sallès, J.,Thovert, J.F.,Delannay, R.,Prevors, L.,Auriault, J.L. and Adler, P.M. (1993b) Taylor Dispersion in Porous Media: Determination of the Dispersion Tensor. Physics of Fluids A., 5, 2348-2376. [CrossRef] [MathSciNet] [Google Scholar]
  • Savage, D.,Noy, D. and Mihara, M. (2002) Modelling the Interaction of Bentonite with Hyperalkaline Fluids. Appl. Geochem., 17, 207-223. [CrossRef] [Google Scholar]
  • Soler, J.M. (2003) Reactive Transport Modeling of the Interaction between a High-pH Plume and a Fractured Marl: the Case of Wellenberg. Appl. Geochem., 18, 1555-1571. [CrossRef] [Google Scholar]
  • Steefel, C.I. and Lichtner, P.C. (1998a) Multicomponent Reactive Transport in Discrete Fractures: I. Controls on Reaction Front Geometry. J. Hydrol., 209, 186-199. [CrossRef] [Google Scholar]
  • Steefel, C.I. and Lichtner, P.C. (1998b) Multicomponent Reactive Transport in Discrete Fractures: II.: Infiltration of Hyperalkaline Groundwater at Maqarin, Jordan, a Natural Analogue Site. J. Hydrol., 209, 200-224. [CrossRef] [Google Scholar]
  • Steefel, C.I. and MacQuarrie, K.T. (1996) Appraoches to Modeling Reactive Transport in Porous Media. In: Reactive Transport in Porous Media, Reviews in Mineralogy, Lichtner, P.C., Steefel, C.I. and Oelkers, E.H. (eds.), Mineral. Soc. Am., 34, 83-129. [Google Scholar]
  • Steefel, C.I.,Carroll, S.,Zhao, P. and Roberts, S. (2003) Cesium Migration in Hanford Sediment: a Multisite Cation Exchange Model Based on Laboratory Transport Experiments. J. Cont Hydr., 67, 219-246. [CrossRef] [Google Scholar]
  • Trotignon, L., Fauré, M.H., Cranga, M. and Peycelon, H. (1998) Numerical Simulation of the Interaction between Granitic Groundwater, Engineered Clay Barrier and Iron Canister. In: Scientific Basis for Nuclear Waste Management XXII (Mater. Res. Soc. Proc. 556, Boston, 1998), 599-606. [Google Scholar]
  • Van der Lee, J. (1997) Modélisation du comportement géochimique et du transport des radionucléides en présence de colloïdes PhD. Dissertation, École des mines de Paris, Fontainebleau, France. [Google Scholar]
  • Van der Lee, J. (1998) Thermodynamic and Mathematical Concepts of CHESS. Technical Report LHM/RD/98/39, CIG, École des mines de Paris, Fontainebleau, France. [Google Scholar]
  • Van der Lee, J., de Windt, L.,Lagneau, V. and Goblet, P. (2002) Presentation and Application of the Reactive Transport Code HYTEC. Comput. Meth. Water Resour., 1, 599-606. [Google Scholar]
  • Van der Lee, J., de Windt, L.,Lagneau, V. and Goblet, P. (2003) Module-Oriented Modeling of Reactive Transport with HYTEC. Computers & Geosciences, 29, 265-275. [CrossRef] [Google Scholar]
  • Yeh, G. and Tripathi, V. (1991) A Model for Simulating Transport of Reactive Multispecies Components: Model Development and Demonstration. Water. Resour. Res., 27, 12, 3075-3094. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.