Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP
Volume 60, Numéro 2, March-April 2005
Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Page(s) 307 - 318
DOI https://doi.org/10.2516/ogst:2005019
Publié en ligne 1 décembre 2006
  • Archie, G.E. (1942) The Electrical Resistivity Log as an Aid to Determining some Reservoir Characteristics. Transactions of the American Institute of Mining Engineers, 146, 54-61. [Google Scholar]
  • Bengaouer, A., Montarnal, P., Loth, L. and Gaombalet, J. (2003) ALLIANCES Project: Integration, Analysis and Design Software Environment for Nuclear Waste Storage and Disposal. Int. Conf. on Supercomputing in Nuclear Applications, 22-24 Sept. 2003, Paris, France. [Google Scholar]
  • Carman, P.C. (1937) Fluid Flow through Granular Beds. Trans. Inst. Chem. Eng., 15, 150-166. [Google Scholar]
  • Chilingar, G.V.,Main, R. and Sinnokrot, A. (1963) Relationship between Porosity, Permeability and Surface Area of Sediments. J. Sediment. Petrol., 33, 759-765. [CrossRef] [Google Scholar]
  • Chilingarian, G.V.,Torabzadeh, J.,Riecke, H.H.,Metghalchi, M. and Mazzullo, S.J. (1992) Interrelationships among Surface Area, Permeability, Porosity, Pore Size and Residual Water Saturation. Developments in Petroleum Science, 30, 379-397. [Google Scholar]
  • Cross, J.E. and Ewart, F.T. (1991) HATCHES - A Thermodynamic Database and Management System. Radiochimica Acta, 52/53, 421-422. [Google Scholar]
  • de Marsily, G. (1986) Quantitative Hydrogeology, Academic Press, London. [Google Scholar]
  • Giambalvo, E.R.,Steefel, C.I.,Fisher, A.T.,Rosenberg, N.D. and Wheat, C.G. (2002) Effect of Fluid-Sediment Reaction on Hydrothermal Fluxes of Major Elements, Eastern Flank of the Juan de Fuca Ridge. Geochim. Cosmochim. Acta, 66, 10, 1739-1757. [CrossRef] [Google Scholar]
  • Johnson, J.W., Nitao, J.J., Steefel, C. and Knaus, K.G. (2001) Reactive Transport Modeling of Geologic CO2 Sequestration in Saline Aquifers; The Influence of Intra-Aquifer Shales and the Relative Effectiveness of Structural, Solubility, and Mineral Trapping During Prograde and Retrograde Sequestration. First Annual Conference on Carbon Equestration, May 14-17th, 2001, http://www.netl.doe.gov/publications/proceedings/01/carbon_seq/ P28.pdf. [Google Scholar]
  • Lagneau, V. (2000) Influence des processus géochimiques sur le transport en milieu poreux; application au colmatage de barrières de confinement potentielles dans un stockage en formation géologique. Ph.D. Dissertation, École des mines de Paris, Fontainebleau, France. [Google Scholar]
  • Lagneau, V., Pipart, A. and Catalette, H. (2004a) Reactive Transport Modeling and Long Term Behavior of a CO2 Sequestration in Saline Aquifers. Oil and Gas Sci. Technol., this issue. [Google Scholar]
  • Lagneau, V., Trotignon L., Van der Lee, J. and Soreau, P. (2004b) Clogging of Porous Media due to Geochemical Reactions: Column Experiments and Numerical Simulations. Submitted to Water Resour. Res. [Google Scholar]
  • Le Gallo, Y., Bildstein, O. and Brosse, E. (1998), Modeling Diagenetic Changes in Reservoir Permeability, Porosity, and Mineral Compositions with Water Flow. In: Reactive Transport Modeling of Natural Systems, Steefel, C.I. and Van Cappellen, P. (eds.), J. Hydrology, 209, 366-387. [Google Scholar]
  • Lichtner, P.C. (1996) Continuum Formulation of MultiComponent- Multiphase Reactive Transport. In: Reactive Transport in Porous Media, Reviews in Mineralogy, 34, 1-81, Mineralogical Society of America. [Google Scholar]
  • Lide, D.R. Editor (1994) Handbook of Chemistry and Physics, 75th Edition, CRC Press, USA. [Google Scholar]
  • Morel, F.M.M. (1983) Principles of Aquatic Chemistry, Wiley- Interscience, New York, USA. [Google Scholar]
  • Mügler, C., Montarnal, P., Dimier, A. and Trotignon, L. (2004) Reactive Transport Modelling in the Context of a Software Platform. Int. Conf. on Computational Methods in Water Resources, 13-17 June 2004, Chapel Hill, USA. [Google Scholar]
  • Sall籬 J.,Thovert, J.F. and Adler, P.M. (1993a) Deposition in Porous Media and Clogging. Chemical Engineering science, 48, 16, 2839-2858. [CrossRef] [Google Scholar]
  • Sallès, J.,Thovert, J.F.,Delannay, R.,Prevors, L.,Auriault, J.L. and Adler, P.M. (1993b) Taylor Dispersion in Porous Media: Determination of the Dispersion Tensor. Physics of Fluids A., 5, 2348-2376. [CrossRef] [MathSciNet] [Google Scholar]
  • Savage, D.,Noy, D. and Mihara, M. (2002) Modelling the Interaction of Bentonite with Hyperalkaline Fluids. Appl. Geochem., 17, 207-223. [CrossRef] [Google Scholar]
  • Soler, J.M. (2003) Reactive Transport Modeling of the Interaction between a High-pH Plume and a Fractured Marl: the Case of Wellenberg. Appl. Geochem., 18, 1555-1571. [CrossRef] [Google Scholar]
  • Steefel, C.I. and Lichtner, P.C. (1998a) Multicomponent Reactive Transport in Discrete Fractures: I. Controls on Reaction Front Geometry. J. Hydrol., 209, 186-199. [CrossRef] [Google Scholar]
  • Steefel, C.I. and Lichtner, P.C. (1998b) Multicomponent Reactive Transport in Discrete Fractures: II.: Infiltration of Hyperalkaline Groundwater at Maqarin, Jordan, a Natural Analogue Site. J. Hydrol., 209, 200-224. [CrossRef] [Google Scholar]
  • Steefel, C.I. and MacQuarrie, K.T. (1996) Appraoches to Modeling Reactive Transport in Porous Media. In: Reactive Transport in Porous Media, Reviews in Mineralogy, Lichtner, P.C., Steefel, C.I. and Oelkers, E.H. (eds.), Mineral. Soc. Am., 34, 83-129. [Google Scholar]
  • Steefel, C.I.,Carroll, S.,Zhao, P. and Roberts, S. (2003) Cesium Migration in Hanford Sediment: a Multisite Cation Exchange Model Based on Laboratory Transport Experiments. J. Cont Hydr., 67, 219-246. [CrossRef] [PubMed] [Google Scholar]
  • Trotignon, L., Fauré, M.H., Cranga, M. and Peycelon, H. (1998) Numerical Simulation of the Interaction between Granitic Groundwater, Engineered Clay Barrier and Iron Canister. In: Scientific Basis for Nuclear Waste Management XXII (Mater. Res. Soc. Proc. 556, Boston, 1998), 599-606. [Google Scholar]
  • Van der Lee, J. (1997) Modélisation du comportement géochimique et du transport des radionucléides en présence de colloïdes PhD. Dissertation, École des mines de Paris, Fontainebleau, France. [Google Scholar]
  • Van der Lee, J. (1998) Thermodynamic and Mathematical Concepts of CHESS. Technical Report LHM/RD/98/39, CIG, École des mines de Paris, Fontainebleau, France. [Google Scholar]
  • Van der Lee, J., de Windt, L.,Lagneau, V. and Goblet, P. (2002) Presentation and Application of the Reactive Transport Code HYTEC. Comput. Meth. Water Resour., 1, 599-606. [Google Scholar]
  • Van der Lee, J., de Windt, L.,Lagneau, V. and Goblet, P. (2003) Module-Oriented Modeling of Reactive Transport with HYTEC. Computers & Geosciences, 29, 265-275. [CrossRef] [Google Scholar]
  • Yeh, G. and Tripathi, V. (1991) A Model for Simulating Transport of Reactive Multispecies Components: Model Development and Demonstration. Water. Resour. Res., 27, 12, 3075-3094. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.