Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Open Access
Oil & Gas Science and Technology - Rev. IFP
Volume 60, Number 2, March-April 2005
Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Page(s) 287 - 305
Published online 01 December 2006
  • Alkattan, M.,Oelkers, E.H.,Dandurand, J.L. and Schott, J. (1998) An Experimental Study of Calcite and Limestone Dissolution Rates as a Function of pH from –1 to 3 and Temperature from 25 to 80°C. Chem. Geol., 151, 199-214. [CrossRef] [Google Scholar]
  • Bachu, S.,Gunter, W.D. and Perkins, E.H. (1994) Aquifer Disposal of CO2: Hydrodynamic and Mineral Trapping. Energy Convers. Mgmt., 35, 269-279. [CrossRef] [Google Scholar]
  • Baumann, J.,Buhmann, D.,Dreybrodt, W. and Schulz, H.D. (1985) Calcite Dissolution Kinetics in Porous Media. Chem. Geol., 53, 219-228. [CrossRef] [Google Scholar]
  • Berner, R.A. (1978) Rate Control of Mineral Dissolution under Earth Surface Conditions. Am. Jour. Sci., 278, 1235-1252. [CrossRef] [Google Scholar]
  • Brunauer, S.,Emmett, P.H. and Teller, E. (1938) Adsorption of Gases in Multimolecular Layers. Jour. Am. Chem. Soc., 60, 309-319. [Google Scholar]
  • Buhmann, D. and Dreybrodt, W. (1985a) The Kinetics of Calcite Dissolution and Precipitation in Geologically Relevant Situations of Karst Areas. 1. Open System. Chem. Geol., 48, 189-211. [CrossRef] [Google Scholar]
  • Buhmann, D. and Dreybrodt, W. (1985b) The Kinetics of Calcite Dissolution and Precipitation in Geologically Relevant Situations of Karst Areas. 2. Closed System. Chem. Geol., 53, 109-124. [CrossRef] [Google Scholar]
  • Buhmann, D. and Dreybrodt, W. (1987) Calcite Dissolution in the System H2O-CO2-CaCO3 with Participation of Foreign Ions. Chem. Geol., 64, 89-102. [CrossRef] [Google Scholar]
  • Burch, T.E.,Nagy, K.L. and Lasaga, A.C. (1993) Free Energy Dependence of Albite Dissolution Kinetics at 80°C and pH 8.8. Chem. Geol., 105, 137-162. [CrossRef] [Google Scholar]
  • Busenberg, E. and Plummer, L.N. (1986) A Comparative Study of the Dissolution and Crystal Growth Kinetics of Calcite and Aragonite. In: Studies in Diagenesis, F.A. Mumpton (Ed.), USGS Bull., 1578, 139-168. [Google Scholar]
  • Casey, W.H. (1987) Heterogeneous Kinetics and Diffusion Boundary Layers: the Example of Reaction in Fracture. Jour. Geophys. Res., 92, 8007-8013. [CrossRef] [Google Scholar]
  • Cassou, C. (2000) Modélisation numérique des interactions eauroche. Thèse, université de Bordeaux. [Google Scholar]
  • Chou, L. and Wollast, R. (1985) Steady State Kinetics and Dissolution Mechanisms of Albite. Amer. Jour. Sci., 285, 963-993. [CrossRef] [Google Scholar]
  • Chung, F.T.H.,Jones, R.A. and Nguyen, T.H. (1988) Measurements and Correlations of the Physical Properties of CO2 - Heavy Crude Oil Mixtures. SPE Reservoir Engineering, 3, 822-828. [CrossRef] [Google Scholar]
  • Coudrain-Ribstein, A.,Gouze, P. and de Marsily, G. (1998) Temperature - Carbon Dioxide Partial Pressure Trends in Confined Aquifers. Chem. Geol., 145, 73-89. [CrossRef] [Google Scholar]
  • Devidal, J.L.,Schott, J. and Dandurand, J.L. (1997) An Experimental Study of Kaolinite Dissolution and Precipitation Kinetics as a Function of Chemical Affinity and Solution Composition at 150°C, 40 bar, and pH 2, 6.8 and 7.8. Geoch. Cosmoch. Acta, 61, 5165-5186. [CrossRef] [Google Scholar]
  • Dove, P.M. and Crerar, D.A. (1990) Kinetics of Quartz Dissolution in Electrolyte Solutions Using a Hydrothermal Mixed-Flow Reactor. Geoch. Cosmoch. Acta, 54, 955-969. [CrossRef] [Google Scholar]
  • Drever, J.I. (1997) The Geochemistry of Natural Waters. Surface and Groundwater Environments, 3rd ed., Prentice-Hall, New Jersey. [Google Scholar]
  • Dreybrodt, W. (1981) Kinetics of the Dissolution of Calcite and its Application to Karstification. Chem. Geol., 31, 245-269. Dromgoole, E.L. and Walter, L.M. (1990) Inhibition of Calcite Growth Rates by Mn2+ in CaCl2 Solutions at 10, 25 and 50°C. Geoch. Cosmoch. Acta, 54, 2991-3000. [Google Scholar]
  • Duan, Z. and Sun, R. (2003) An Improved Model Calculating CO2 Solubility in Pure Water and Aqueous NaCl Solutions from 273 to 533 K and from 0 to 2000 bar. Chem. Geol., 193, 257-271. [Google Scholar]
  • Eisenlohr, L.,Meteva, K.,Gabrovsvek, F. and Dreybrodt, W. (1999) The Inhibiting Action of Intrinsic Impurities in Natural Calcium Carbonate Minerals to their Dissolution Kinetics in Aqueous H2O-CO2 Solutions. Geoch. Cosmoch., Acta, 63, 989-1002. [CrossRef] [Google Scholar]
  • Enick, R.M. and Klara, S.M. (1990) CO2 Solubility in Water and Brine under Reservoir Conditions. Chem. Eng. Comm., 90, 23-33. [CrossRef] [Google Scholar]
  • Gautier, J.M.,Oelkers, E.H. and Schott, J. (2001) Are Quartz Dissolution Rates Proportional to BET Surface Areas? Geoch. Cosmoch. Acta, 65, 1059-1070. [CrossRef] [Google Scholar]
  • Gunter, W.D.,Perkins, E.H. and McCann, T.J. (1993) Aquifer Disposal of CO2-Rich Gases: Reaction Design for Added Capacity. Energy Convers. Mgmt., 34, 941-948. [Google Scholar]
  • Gunter, W.D.,Wiwchar, B. and Perkins, E.H. (1997) Aquifer Disposal of CO2-Rich Greenhouse Gases: Extension of the Time Scale of Experiment for CO2-Sequestering Reactions by Geochemical Modelling. Mineral. and Petrol., 59, 121-140. [Google Scholar]
  • Guy, C. and Schott, J. (1989) Multisite Surface Reaction versus Transport Control During the Hydrolysis of a Complex Oxide. Chem. Geol., 78, 181-204. [CrossRef] [Google Scholar]
  • Helgeson, H.C. (1969) Thermodynamics of Hydrothermal Systems at Elevated Temperatures and Pressures. Amer. Jour. Science, 267, 729-804. [Google Scholar]
  • Helgeson, H.C.,Kirkham, D.H. and Flowers, G.C. (1981) Theoretical Prediction of the Thermodynamic Behavior of Aqueous Electrolytes by High Pressures and Temperatures. IV. Calculation of Activity Coefficients, Osmotic Coefficients, and Apparent Molal and Standard and Relative Partial Molal Properties to 600°C and 5 kb. Am. Jour. of Science, 281, 1249-1516. [Google Scholar]
  • Helgeson, H.C.,Murphy, W.M. and Aagaard, P. (1984) Thermodynamic and Kinetic Constraints on Reaction Rates Among Minerals and Aqueous Solutions. II. Rate Constants, Effective Surface Area, and the Hydrolysis of Feldspar. Geoch. Cosmoch. Acta, 48, 2405-2432. [CrossRef] [Google Scholar]
  • Hutcheon, I. and Abercrombie, H. (1990) Carbon Dioxide in Clastic Rocks and Silicate Hydrolysis. Geology, 18, 541-544. [CrossRef] [Google Scholar]
  • Jeschke, A.A. and Dreybrodt, W. (2002) Dissolution Rates of Minerals and their Relation to Surface Morphology. Geoch. Cosmoch. Acta, 66, 3055-3062. [CrossRef] [Google Scholar]
  • Johnson, J.W.,Knauss, K.G.,Glassley, W.E.,DeLoach, L.D. and Tompson, A.F.B. (1998) Reactive Transport Modeling of Plug- Flow Reactor Experiments: Quartz and Tuff Dissolution at 240°C. Jour. of Hydrol., 209, 81-111. [CrossRef] [Google Scholar]
  • Johnson, J.W., Nitao, J.K. and Knaus, K.G. (2004) Reactive Transport Modelling of CO2 Storages in Saline Aquifers to Elucidate Fundamental Processes, Trapping Mechanisms, and Sequestration Partitioning. In: Geological Storage of Carbon Dioxide, S.J. Baines and R.H. Worden (Eds.), Geol. Soc. Spec. Publ. 233, London. [Google Scholar]
  • JovéColón, C.F.,Oelkers, E.H. and Schott, J. (2004) Experimental Investigation of the Effect of Dissolution on Sandstone Permeability, Porosity, and Reactive Surface Area. Geoch. Cosmoch. Acta, 68, 805-817. [CrossRef] [Google Scholar]
  • Kervévan, C., Azaroual, M. and Durst, P. (2005) Improvement of the Calculation Accuracy of Acid Gas Solubility in Deep Reservoir Brines: Application to the Geological Storage of CO2. This Issue. [Google Scholar]
  • Kieffer, B., JovéColón, C.F.,Oelkers, E.H. and Schott, J. (1999) An Experimental Study of the Reactive Surface Area of the Fontainebleau Sandstone as a Function of Porosity, Permeability, and Fluid Flow Rate. Geoch. Cosmoch. Acta, 63, 3525-3534. [CrossRef] [Google Scholar]
  • Knapp, R.B. (1989) Spatial and Temporal Scales of Local Equilibrium in Dynamic Fluid-Rock systems. Geoch. Cosmoch. Acta, 53, 1955-1964. [CrossRef] [Google Scholar]
  • Lasaga, A.C. (1998) Kinetic Theory in the Earth Sciences. Princeton University Press. [Google Scholar]
  • LeGallo, Y.,Bildstein, O. and Brosse, E. (1998) Coupled Reaction-Flow Modeling of Diagenetic Changes in Reservoir Permeability, Porosity and Mineral Compositions. Jour. of Hydrology, 209, 366-388. [Google Scholar]
  • Lichtner, P.C. (1996) Continuum Formulation of Multicomponent - Multiphase Reactive Transport. In: Reactive Transport in Porous Media, Lichtner, P.C., Steefel, C.I. and Oelkers, E.H. (Eds.), Mineral Society of America, Reviews in Mineralogy, 34, 1-81. [Google Scholar]
  • Lüttge, A.,Winkler, U. and Lasaga, A.C. (2003) Interferometric Study of the Dolomite Dissolution: A New Conceptual Model for Mineral Dissolution. Geoch. Cosmoch. Acta, 67, 1099-1116. [Google Scholar]
  • Mast, M.A. and Drever, J.I. (1987) The Effect of Oxalate on the Dissolution Rates of Oligoclase and Tremolite. Geoch. Cosmoch. Acta, 51, 2559-2568. [CrossRef] [Google Scholar]
  • Mathis, R.L. and Sears, S.O. (1984) Effect of CO2 Flooding on Dolomite Reservoir Rock, Denver unit, Wasson (San Andres) Field, TX. SPE 13132. [Google Scholar]
  • Murphy, W.M. and Helgeson, H.C. (1989) Thermodynamic and Kinetic Constraints on Reaction Rates Among Minerals and Aqueous Solutions. IV. Retrieval of Rate Constants and Activation Parameters for the Hydrolysis of Pyroxene, Wollastonite, Olivine, Andalusite, Quartz and Nepheline. Am. Jour. of Science, 289, 17-101. [CrossRef] [Google Scholar]
  • Nagy, K.L. and Lasaga, A.C. (1992) Dissolution and Precipitation Kinetics of Gibbsite at 80°C and pH 3: The Dependence on Solution Saturation State. Geoch. Cosmoch. Acta, 56, 3093-3111. [CrossRef] [Google Scholar]
  • Nagy, K.L.,Steefel, C.I.,Blum, A.E. and Lasaga, A.C. (1990) Dissolution and Precipitation Kinetics of Kaolinite: Initial Results at 80°C with Application to Porosity Evolution in a Sandstone. In: Prediction of Reservoir Quality Through Reservoir Modeling, I.D. Meshri and P.J. Ortoleva (Eds.), AAPG Mem. 49, 85-101. [Google Scholar]
  • Nagy, K.L.,Blum, A.E. and Lasaga, A.C. (1991) Dissolution and Precipitation Kinetics of Kaolinite at 80°C and pH 3: The Dependence on Solution Saturation State. Am. Jour. of Science, 291, 649-686. [CrossRef] [Google Scholar]
  • Noiriel, C., Bernard, D., Gouze, P. and Thibault, X. (2005) Hydraulic Properties and Microgeometry Evolution Accompanying Limestone Dissolution by Acidic Water. This Issue. [Google Scholar]
  • Oelkers, E.H. (1996) Physical and Chemical Properties of Rocks and Fluids for Chemical Mass Transport Calculations. In: Reactive Transport in Porous Media, P.C. Lichtner, C.I. Steefel, E.H. Oelkers (Eds.), Mineral Society of America, Reviews in Mineralogy, 34, 131-191. [Google Scholar]
  • Plummer, L.N.,Wigley, T.M.L. and Parkhurst, D.L. (1978) The Kinetics of Calcite Dissolution in CO2-Water Systems at 5° to 60°C and 0.0 to 1.0 atm CO2. Am. Jour. Sci., 278, 179-216. [CrossRef] [Google Scholar]
  • Pokrovsky, O.S. and Schott, J. (2002) Surface Chemistry and Dissolution Kinetics of Divalent Metal Carbonates. Environ. Sci. Technol., 36, 426-432. [CrossRef] [PubMed] [Google Scholar]
  • Portier, S. (2005). Solubilité CO2 dans les saumures des bassins sédimentaires. Application au stockage de CO2. Thèse, univ. de Strasbourg. [Google Scholar]
  • Portier, S. and Rochelle, C. (2005) Modelling CO2 Solubility in Pure Water and NaCl-Type Waters from 0 to 300 Degrees Celcius and from 1 to 300 bar. Application to the Utsira Formation at Sleipner. In: Geochemical Aspects of CO2 Sequestering, Special Issue of Chemical Geology, in press. [Google Scholar]
  • Quintard, M. and Whitaker, S. (1999) Dissolution of an Immobile Phase During Flow in Porous media. Industrial and Engineering Chemistry Research, 38, 833-844. [CrossRef] [Google Scholar]
  • Rickard, D.T. and Sjöberg, E.L. (1983) Mixed Kinetic Control of Calcite Dissolution Rates. Amer. Jour. Science, 283, 815-830. [CrossRef] [Google Scholar]
  • Ross, G.D., Todd, A.C., Tweedie, J.A. and Will, A.G.S. (1982) The Dissolution Effects of CO2-Brine Systems on the Permeability of UK and North Sea Calcareous Sandstones. SPE/DOE 10685. [Google Scholar]
  • Schnoor, J.L. (1990) Kinetics of Chemical Weathering: a Comparison of Laboratory and Field Weathering Rates. In: Aquatic Chemical Kinetics, W. Stumm (Ed.), Wiley-Interscience Publ., 475-504. [Google Scholar]
  • Simon, R. and Graue, D. (1965) Generalized Correlations for Predicting Solubility, Swelling and Viscosity Behavior of CO2 - Crude Oil System. J. Petrol. Tech., 102-106. [Google Scholar]
  • Sjöberg, E.L. and Rickard, D.T. (1984) Temperature Dependence of Calcite Dissolution Kinetics between 1 and 62°C at pH 2.7 to 8.4 in Aqueous Solutions. Geoch. Cosmoch. Acta, 48, 485-493. [CrossRef] [Google Scholar]
  • Smith, J.T. and Ehrenberg, S.N. (1989) Correlation of Carbon Dioxide Abundance with Temperature in Clastic Hydrocarbon Reservoirs: Relationship to Inorganic Chemical Equilibrium. Mar. & Petrol. Geol., 6, 129-135. [CrossRef] [Google Scholar]
  • Steefel, C.I. and MacQuarrie, K.T.B. (1996) Approaches to Modeling Reactive Transport in Porous Media. In: Reactive Transport in Porous Media, Lichtner, P.C., Steefel, C.I., Oelkers, E.H. (Eds.), Mineral Society of America, Reviews in Mineralogy, 34, 83-129. [Google Scholar]
  • Stumm, W. and Morgan, J.J. (1970) Aquatic Chemistry. Wiley- Interscience, New York, London, Sidney, Toronto. [Google Scholar]
  • Stumm, W. and Wieland, E. (1990) Dissolution of Oxide and Silicate Minerals: Rates Depend on Surface Speciation. In: Aquatic Mineral Kinetics, Reaction Rates of Processes in Natural Waters, W. Stumm (Ed.), 367-400. [Google Scholar]
  • Svec, R.K. and Grigg, R.B. (2001) Physical Effects of WAG Fluids on Carbonate Core Plugs. SPE 71496. [Google Scholar]
  • Tester, J.W.,Worley, W.G.,Robinson, B.A.,Grigsby, C.O. and Feerer, J.L. (1994) Correlating Quartz Dissolution Kinetics in Pure Water from 25 to 625°C. Geoch. Cosmoch. Acta, 58, 2407-2420. [Google Scholar]
  • Thiry, M. (1999) Diversity of Continental Silicification Features: Examples from the Cenozoic Deposits in the Paris Basin and Neighbouring Basement. Int. Ass. Sediment. Spec. Publ., 27, 87-127. [Google Scholar]
  • Usdowski, E. (1982) Reactions and Equilibria in the Systems CO2-H2O and CaCO3-CO2-H2O (0-50°C). A Review. N. Jb. Miner. Abh., 144, 2, 148-171. [Google Scholar]
  • Van Cappellen, P.,Charlet, L.,Stumm, W. and Wersin, P. (1993) A Surface Complexation Model of the Carbonate Mineral-Aqueous Solution Interface. Geoch. Cosmoch. Acta, 57, 3505-3518. [CrossRef] [Google Scholar]
  • Vengu, T. (1983) Propriétés thermodynamiques d'un pétrole brut en présence de gaz carbonique. Application à la récupération assistée. Thèse, univ. Paris VI. [Google Scholar]
  • White, A.F. and Brantley, S.L. (2003) The Effect of Time on the Weathering of Silicate Minerals: Why Do Weathering Rates Differ in the Laboratory and Field? Chem. Geol., 202, 479-506. [CrossRef] [Google Scholar]
  • Withe, A.F. and Peterson, M. (1990) The Role of Reactive Surface Areas in Chemical Weathering. In: Geochemistry of the Earth's Surface and of Mineral Formation, 2nd Int. Symp., July 2-8 1990, Aix-en-Provence, France, 334-338. [Google Scholar]
  • Xu, T.,Apps, J.A. and Pruess, K. (2003) Reactive Geochemical Transport Simulation to Study Mineral Trapping for CO2 Disposal in Deep Arenaceous Formations. Jour. Geophys. Res., 108, B2 (in press). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.