Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 60, Number 2, March-April 2005
Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Page(s) 275 - 285
DOI https://doi.org/10.2516/ogst:2005017
Published online 01 December 2006
  • Hansen, J.E.,Sato, M.,Lacis, A.,Ruedy, R.,Tegen, I. and Matthews, E. (1998) Climate Forcings in the Industrial Era. Proceedings of the National Academy of Sciences, 95, 22, 12753-12758. [CrossRef] [Google Scholar]
  • Lackner, K.S. (2003) A Guide to CO2 Sequestration. Science, 300, 5626, 1677-1678. [CrossRef] [PubMed] [Google Scholar]
  • Gunter, W.G.,Wiwchar, B., and Perkins, E.H. (1997) Aquifer Disposal of CO2-Rich Greenhouse Gases: Extension of the Time Scale of Experiment for CO2-Sequestering Reactions by Geochemical Modelling. Mineralogy and Petrology, 59, 1-2, 121-140. [CrossRef] [Google Scholar]
  • Gunter, W.G.,Perkins, E.H., and Hutcheon, I. (2000) Aquifer Disposal of Acid Gases: Modelling of Water-Rock Reactions for Trapping of Acid Wastes. Applied Geochemistry, 15, 8, 1085-1095. [CrossRef] [Google Scholar]
  • Xu, T.,Apps, J.A., and Pruess, K. (2004) Numerical Simulation of CO2 Disposal by Mineral Trapping in Deep Aquifers. Applied Geochemistry, 19, 6, 917-936. [CrossRef] [Google Scholar]
  • Helgeson, H.C.,Knox, A.M.,Owens, C.E. and Shock, E.L. (1993) Petroleum, Oil Field Waters, and Authigenic Mineral Assemblages: Are they in Metastable Equilibrium in Hydrocarbon Reservoirs? Geochimica Cosmochimica Acta, 57, 14, 3295-3339. [CrossRef] [Google Scholar]
  • Helgeson, H.C., Delany, J.M., Nesbitt, H.W. and Bird, D.K. (1978) Summary and Critique of the Thermodynamic Properties of Rock-Forming Minerals. American Journal of Science, 278-A, 1-229. [Google Scholar]
  • Helgeson, H.C.,Owens, C.E.,Knox, A.M. and Richard, L. (1998) Calculation of the Standard Molal Thermodynamic Properties of Crystalline, Liquid, and Gas Organic Molecules at high temperatures and pressures. Geochimica Cosmochimica Acta, 62, 6, 985-1081. [CrossRef] [Google Scholar]
  • Richard, L. (2001) Calculation of the Standard Molal Thermodynamic Properties as a Function of Temperature and Pressure of some Geochemically Important Organic Sulfur Compounds. Geochimica Cosmochimica Acta, 65, 21, 3827-3877. [CrossRef] [Google Scholar]
  • Maier, C.G. and Kelley, K.K. (1932) An Equation for the Representation of High Temperature Heat-Content Data. Journal of the American Chemical Society, 54, 8, 3243-3246. [CrossRef] [MathSciNet] [Google Scholar]
  • Richard, L. and Helgeson, H.C. (2004) Calculation of the Standard Molal Volumes of Crystalline and Liquid Organic Compounds as a Function of Temperature and Pressure (in preparation). [Google Scholar]
  • Tanger, J.C. and Helgeson, H.C. (1988) Calculation of the Thermodynamic and Transport Properties of Aqueous Species at High Pressures and Temperatures: Revised Equations of State for the Standard Partial Molal Properties of Ions and Electrolytes. American Journal of Science, 288, 1, 19-98. [CrossRef] [Google Scholar]
  • Johnson, J.W.,Oelkers, E.H. and Helgeson, H.C. (1992) SUPCRT92: A Software Package for Calculating the Standard Molal Thermodynamic Properties of Minerals, Gases, Aqueous Species, and Reactions from 1 to 5000 bar and 0 to 1000ºC. Computers and Geosciences, 18, 7, 899-947. [NASA ADS] [CrossRef] [Google Scholar]
  • Shock, E.L. and Helgeson, H.C. (1988) Calculation of the Thermodynamic and Transport Properties of Aqueous Species at High Pressures and Temperatures: Correlation Algorithms for Ionic Species and Equation of State Predictions to 5 kb and 1000°C. Geochimica Cosmochimica Acta, 52, 8, 2009-2036. [CrossRef] [Google Scholar]
  • Shock, E.L.,Helgeson, H.C., and Sverjensky, D.A. (1989) Calculation of the Thermodynamic and Transport Properties of Aqueous Species at High Pressures and Temperatures: Standard Partial Molal Properties of Inorganic Neutral Species. Geochimica Cosmochimica Acta, 53, 9, 2157-2183. [CrossRef] [Google Scholar]
  • Gurrieri, S. (1997) Personal Communication. [Google Scholar]
  • Michard, G. and Bastide, J.P. (1988) Étude géochimique de la nappe du Dogger du Bassin parisien. Journal of Volcanology and Geothermal Research, 35, 1/2, 151-163. [CrossRef] [Google Scholar]
  • Egeberg, P.K. and Aagaard, P. (1989) Origin and Evolution of Formation Waters from Oil Fields on the Norwegian Shelf. Applied Geochemistry, 4, 2, 131-142. [CrossRef] [Google Scholar]
  • Connolly, C.A.,Walter, L.M.,Baadsgaard, H. and Longstaffe, F.J. (1990) Origin and Evolution of Formation Waters, Alberta Basin, Western Canada Sedimentary Basin. I. Chemistry. Applied Geochemistry, 5, 4, 375-395. [CrossRef] [Google Scholar]
  • Fritz, B. (1981) Étude thermodynamique et modélisation des réactions hydrothermales et diagénétiques. Mémoire des Sciences Géologiques, 65. [Google Scholar]
  • Helgeson, H.C. (1969) Thermodynamics of Hydrothermal Systems at Elevated Temperatures and Pressures. American Journal of Science, 267, 7, 729-804. [CrossRef] [Google Scholar]
  • Aagaard, P., Jahren, J.S. and Ehrenberg, S.N. (2001) H2SControlling Reactions in Clastic Hydrocarbon Reservoirs from the Norwegian Shelf and US Gulf Coast. In: Water- Rock Interaction 2001, Cidu R. (ed.), Swets & Zeitlinger, Lisse, 129-132. [Google Scholar]
  • Heydari, E. (1997) The Role of Burial Diagenesis in Hydrocarbon Destruction and H2S Accumulation, Upper Jurassic Smackover Formation, Black Creek Field, Mississippi. Bulletin of the American Association of Petroleum Geologists, 81, 1, 26-45. [Google Scholar]
  • Riciputi, L.R.,Cole, D.R. and Machel, H.G. (1996) Sulfide Formation in Reservoir Carbonates of the Devonian Nisku Formation, Alberta, Canada: An ion microprobe study. Geochimica et Cosmochimica Acta, 60, 2, 325-336. [CrossRef] [Google Scholar]
  • Machel, H.G. (2001) Bacterial and Thermochemical Sulfate Reduction in Diagenetic Settings – Old and New Insights. Sedimentary Geology, 140, 1/2, 143-175. [CrossRef] [Google Scholar]
  • Orr, W.L. (1977) Geologic and Geochemical Controls on the Distribution of Hydrogen Sulfide in Natural Gas. In: Advances in Organic Geochemistry 1975, Campos, R., and Goñi, J. (eds.), Empresa Nacional Adaro De Investigaciones Mineras, Madrid, 571-597. [Google Scholar]
  • Worden, R.H.,Smalley, P.C. and Oxtoby, N.H. (1995) Gas Souring by Thermochemical Sulfate Reduction at 140°C. Bulletin of the American Association of Petroleum Geologists, 79, 6, 854-863. [Google Scholar]
  • Manzano, B.K.,Fowler, M.G. and Machel, H.G. (1997) The Influence of Thermochemical Sulfate Reduction on Hydrocarbon Composition in Nisku Reservoirs, Brazeau River Area, Alberta, Canada. Organic Geochemistry, 27, 7/8, 507-521. [CrossRef] [Google Scholar]
  • Hutcheon, I. (1999) Controls on the Distribution of Non- Hydrocarbon Gases in the Alberta Basin. Bulletin of Canadian Petroleum Geology, 47, 4, 573-593. [Google Scholar]
  • Håland, K., Barrufet, M.A., R�gsen, H.P. and Meisingset, K.K. (1999) An Empirical Correlation between Reservoir Temperature and the Concentration of Hydrogen Sulfide. Proceedings SPE International Symposium on Oilfield Chemistry, 589-596. [Google Scholar]
  • Richard, L. and Helgeson, H.C. (2001) Thermodynamic Calculation of the Distribution of Organic Sulfur Compounds in Crude Oil as a Function of Temperature, Pressure, and H2S Fugacity. In: Water-Rock Interaction 2001, Cidu R. (ed.), Swets & Zeitlinger, Lisse, 333-335. [Google Scholar]
  • Orr, W.L., and Sinninghe Damsté, J.S. (1990) Geochemistry of Sulfur in Petroleum Systems. In: Geochemistry of Sulfur in Fossil Fuels, Orr W.L. and White C.M. (eds.), American Chemical Society Symposium Series, 429, American Chemical Society, 2-29. [Google Scholar]
  • Valitov, N.B. and Valitov, R.B. (1975) The Role of Temperature in Formation of Sulfur-Bearing Petroleums and Catagenetic Hydrogen Sulfide in Carbonate Reservoirs (experimental investigations). Geochemistry International, 12, 5, 73-81. [Google Scholar]
  • Schmid, J.C.,Connan, J. and Albrecht, P. (1987) Occurrence and Geochemical Significance of Long-Chain Dialkylthiacyclopentanes. Nature, 329, 6134, 54-56. [CrossRef] [Google Scholar]
  • Helgeson, H.C. (1991) Organic/Inorganic Reactions in Metamorphic Processes. Canadian Mineralogist, 29, 4, 707-739. [Google Scholar]
  • Peng, D.Y. and Robinson, D.B. (1976) A New Two-Constant Equation of State. Industrial and Engineering Chemistry Fundamentals, 15, 1, 59-64. [CrossRef] [Google Scholar]
  • Prausnitz, J.M., Lichtenthaler R.N. and de Azevedo E.G. (1986) Molecular Thermodynamics of Fluid-Phase Equilibria, 2nd Edition, Prentice-Hall. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.