Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP
Volume 60, Numéro 2, March-April 2005
Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Page(s) 275 - 285
DOI https://doi.org/10.2516/ogst:2005017
Publié en ligne 1 décembre 2006
  • Hansen, J.E.,Sato, M.,Lacis, A.,Ruedy, R.,Tegen, I. and Matthews, E. (1998) Climate Forcings in the Industrial Era. Proceedings of the National Academy of Sciences, 95, 22, 12753-12758. [CrossRef] [Google Scholar]
  • Lackner, K.S. (2003) A Guide to CO2 Sequestration. Science, 300, 5626, 1677-1678. [CrossRef] [PubMed] [Google Scholar]
  • Gunter, W.G.,Wiwchar, B., and Perkins, E.H. (1997) Aquifer Disposal of CO2-Rich Greenhouse Gases: Extension of the Time Scale of Experiment for CO2-Sequestering Reactions by Geochemical Modelling. Mineralogy and Petrology, 59, 1-2, 121-140. [CrossRef] [Google Scholar]
  • Gunter, W.G.,Perkins, E.H., and Hutcheon, I. (2000) Aquifer Disposal of Acid Gases: Modelling of Water-Rock Reactions for Trapping of Acid Wastes. Applied Geochemistry, 15, 8, 1085-1095. [CrossRef] [Google Scholar]
  • Xu, T.,Apps, J.A., and Pruess, K. (2004) Numerical Simulation of CO2 Disposal by Mineral Trapping in Deep Aquifers. Applied Geochemistry, 19, 6, 917-936. [CrossRef] [Google Scholar]
  • Helgeson, H.C.,Knox, A.M.,Owens, C.E. and Shock, E.L. (1993) Petroleum, Oil Field Waters, and Authigenic Mineral Assemblages: Are they in Metastable Equilibrium in Hydrocarbon Reservoirs? Geochimica Cosmochimica Acta, 57, 14, 3295-3339. [CrossRef] [Google Scholar]
  • Helgeson, H.C., Delany, J.M., Nesbitt, H.W. and Bird, D.K. (1978) Summary and Critique of the Thermodynamic Properties of Rock-Forming Minerals. American Journal of Science, 278-A, 1-229. [Google Scholar]
  • Helgeson, H.C.,Owens, C.E.,Knox, A.M. and Richard, L. (1998) Calculation of the Standard Molal Thermodynamic Properties of Crystalline, Liquid, and Gas Organic Molecules at high temperatures and pressures. Geochimica Cosmochimica Acta, 62, 6, 985-1081. [CrossRef] [Google Scholar]
  • Richard, L. (2001) Calculation of the Standard Molal Thermodynamic Properties as a Function of Temperature and Pressure of some Geochemically Important Organic Sulfur Compounds. Geochimica Cosmochimica Acta, 65, 21, 3827-3877. [CrossRef] [Google Scholar]
  • Maier, C.G. and Kelley, K.K. (1932) An Equation for the Representation of High Temperature Heat-Content Data. Journal of the American Chemical Society, 54, 8, 3243-3246. [CrossRef] [MathSciNet] [Google Scholar]
  • Richard, L. and Helgeson, H.C. (2004) Calculation of the Standard Molal Volumes of Crystalline and Liquid Organic Compounds as a Function of Temperature and Pressure (in preparation). [Google Scholar]
  • Tanger, J.C. and Helgeson, H.C. (1988) Calculation of the Thermodynamic and Transport Properties of Aqueous Species at High Pressures and Temperatures: Revised Equations of State for the Standard Partial Molal Properties of Ions and Electrolytes. American Journal of Science, 288, 1, 19-98. [CrossRef] [Google Scholar]
  • Johnson, J.W.,Oelkers, E.H. and Helgeson, H.C. (1992) SUPCRT92: A Software Package for Calculating the Standard Molal Thermodynamic Properties of Minerals, Gases, Aqueous Species, and Reactions from 1 to 5000 bar and 0 to 1000ºC. Computers and Geosciences, 18, 7, 899-947. [NASA ADS] [CrossRef] [Google Scholar]
  • Shock, E.L. and Helgeson, H.C. (1988) Calculation of the Thermodynamic and Transport Properties of Aqueous Species at High Pressures and Temperatures: Correlation Algorithms for Ionic Species and Equation of State Predictions to 5 kb and 1000°C. Geochimica Cosmochimica Acta, 52, 8, 2009-2036. [CrossRef] [Google Scholar]
  • Shock, E.L.,Helgeson, H.C., and Sverjensky, D.A. (1989) Calculation of the Thermodynamic and Transport Properties of Aqueous Species at High Pressures and Temperatures: Standard Partial Molal Properties of Inorganic Neutral Species. Geochimica Cosmochimica Acta, 53, 9, 2157-2183. [CrossRef] [Google Scholar]
  • Gurrieri, S. (1997) Personal Communication. [Google Scholar]
  • Michard, G. and Bastide, J.P. (1988) Étude géochimique de la nappe du Dogger du Bassin parisien. Journal of Volcanology and Geothermal Research, 35, 1/2, 151-163. [CrossRef] [Google Scholar]
  • Egeberg, P.K. and Aagaard, P. (1989) Origin and Evolution of Formation Waters from Oil Fields on the Norwegian Shelf. Applied Geochemistry, 4, 2, 131-142. [CrossRef] [Google Scholar]
  • Connolly, C.A.,Walter, L.M.,Baadsgaard, H. and Longstaffe, F.J. (1990) Origin and Evolution of Formation Waters, Alberta Basin, Western Canada Sedimentary Basin. I. Chemistry. Applied Geochemistry, 5, 4, 375-395. [CrossRef] [Google Scholar]
  • Fritz, B. (1981) Étude thermodynamique et modélisation des réactions hydrothermales et diagénétiques. Mémoire des Sciences Géologiques, 65. [Google Scholar]
  • Helgeson, H.C. (1969) Thermodynamics of Hydrothermal Systems at Elevated Temperatures and Pressures. American Journal of Science, 267, 7, 729-804. [CrossRef] [Google Scholar]
  • Aagaard, P., Jahren, J.S. and Ehrenberg, S.N. (2001) H2SControlling Reactions in Clastic Hydrocarbon Reservoirs from the Norwegian Shelf and US Gulf Coast. In: Water- Rock Interaction 2001, Cidu R. (ed.), Swets & Zeitlinger, Lisse, 129-132. [Google Scholar]
  • Heydari, E. (1997) The Role of Burial Diagenesis in Hydrocarbon Destruction and H2S Accumulation, Upper Jurassic Smackover Formation, Black Creek Field, Mississippi. Bulletin of the American Association of Petroleum Geologists, 81, 1, 26-45. [Google Scholar]
  • Riciputi, L.R.,Cole, D.R. and Machel, H.G. (1996) Sulfide Formation in Reservoir Carbonates of the Devonian Nisku Formation, Alberta, Canada: An ion microprobe study. Geochimica et Cosmochimica Acta, 60, 2, 325-336. [CrossRef] [Google Scholar]
  • Machel, H.G. (2001) Bacterial and Thermochemical Sulfate Reduction in Diagenetic Settings – Old and New Insights. Sedimentary Geology, 140, 1/2, 143-175. [CrossRef] [Google Scholar]
  • Orr, W.L. (1977) Geologic and Geochemical Controls on the Distribution of Hydrogen Sulfide in Natural Gas. In: Advances in Organic Geochemistry 1975, Campos, R., and Goñi, J. (eds.), Empresa Nacional Adaro De Investigaciones Mineras, Madrid, 571-597. [Google Scholar]
  • Worden, R.H.,Smalley, P.C. and Oxtoby, N.H. (1995) Gas Souring by Thermochemical Sulfate Reduction at 140°C. Bulletin of the American Association of Petroleum Geologists, 79, 6, 854-863. [Google Scholar]
  • Manzano, B.K.,Fowler, M.G. and Machel, H.G. (1997) The Influence of Thermochemical Sulfate Reduction on Hydrocarbon Composition in Nisku Reservoirs, Brazeau River Area, Alberta, Canada. Organic Geochemistry, 27, 7/8, 507-521. [CrossRef] [Google Scholar]
  • Hutcheon, I. (1999) Controls on the Distribution of Non- Hydrocarbon Gases in the Alberta Basin. Bulletin of Canadian Petroleum Geology, 47, 4, 573-593. [Google Scholar]
  • Håland, K., Barrufet, M.A., R�gsen, H.P. and Meisingset, K.K. (1999) An Empirical Correlation between Reservoir Temperature and the Concentration of Hydrogen Sulfide. Proceedings SPE International Symposium on Oilfield Chemistry, 589-596. [Google Scholar]
  • Richard, L. and Helgeson, H.C. (2001) Thermodynamic Calculation of the Distribution of Organic Sulfur Compounds in Crude Oil as a Function of Temperature, Pressure, and H2S Fugacity. In: Water-Rock Interaction 2001, Cidu R. (ed.), Swets & Zeitlinger, Lisse, 333-335. [Google Scholar]
  • Orr, W.L., and Sinninghe Damsté, J.S. (1990) Geochemistry of Sulfur in Petroleum Systems. In: Geochemistry of Sulfur in Fossil Fuels, Orr W.L. and White C.M. (eds.), American Chemical Society Symposium Series, 429, American Chemical Society, 2-29. [Google Scholar]
  • Valitov, N.B. and Valitov, R.B. (1975) The Role of Temperature in Formation of Sulfur-Bearing Petroleums and Catagenetic Hydrogen Sulfide in Carbonate Reservoirs (experimental investigations). Geochemistry International, 12, 5, 73-81. [Google Scholar]
  • Schmid, J.C.,Connan, J. and Albrecht, P. (1987) Occurrence and Geochemical Significance of Long-Chain Dialkylthiacyclopentanes. Nature, 329, 6134, 54-56. [CrossRef] [Google Scholar]
  • Helgeson, H.C. (1991) Organic/Inorganic Reactions in Metamorphic Processes. Canadian Mineralogist, 29, 4, 707-739. [Google Scholar]
  • Peng, D.Y. and Robinson, D.B. (1976) A New Two-Constant Equation of State. Industrial and Engineering Chemistry Fundamentals, 15, 1, 59-64. [CrossRef] [Google Scholar]
  • Prausnitz, J.M., Lichtenthaler R.N. and de Azevedo E.G. (1986) Molecular Thermodynamics of Fluid-Phase Equilibria, 2nd Edition, Prentice-Hall. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.