Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 60, Number 2, March-April 2005
Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Page(s) 381 - 399
DOI https://doi.org/10.2516/ogst:2005023
Published online 01 December 2006
  • Alcantar, N.,Israelachvili, J. and Boles, J. (2003) Forces and Ionic Transport between Mica Surfaces: Implications for Pressure Solution. Geochimica et Cosmochimica Acta, 67, 1289-1304. [CrossRef] [Google Scholar]
  • Arakaki, T. and Mucci, A. (1995) A Continuous and Mechanistic Representation of Calcite Reaction-Controlled Kinetics in Dilute Solutions at 25°C and 1 atm total pressure. Aquatic Geochemistry, 1, 105-130. [CrossRef] [Google Scholar]
  • Berner, R. and Morse, J.W. (1974) Dissolution Kinetics of Calcium Carbonate in Sea Water. IV. Theory of Calcite Dissolution. American Journal Science, 274, 108-134. [CrossRef] [Google Scholar]
  • Botter, B.J. (1985) Pore Collapse Measurements on Chalk Cores. 2nd North Sea Chalk Symposium, Deauville, France. [Google Scholar]
  • Busenberg, E. and Plummer, L.N. (1986) A Comparative Study of the Dissolution and Crystal Growth Kinetics of Calcite and Aragonite. In: Studies in Diagenesis, F.A. Mupton (ed.), US Geol. Surv. Bull., 1578, 139-168. [Google Scholar]
  • Cubillas, P., Prieto, M., Köhler, S. and Oelkers, E.H., (2004) Coupled Dissolution/Precipitation Rates in the System CaCO3- CdCO3. In: Water-Rock Interaction (Wanty, R. and Seal II, R., eds.), A.A. Balkema, Leiden, 714-744. [Google Scholar]
  • da Silva, F., Monjoie, A., Debande, G., Schroeder, C., Poot, B., Detiege, C. and Halleux, L. (1985) Mechanical Behaviour of Chalks. 2nd North Sea Chalk Symposium, Stavanger, Norway, 2, 1-10. [Google Scholar]
  • de Meer, S.,Spiers, C. J.,Peach, C. J. and Watanabe, T. (2002) Diffusive Properties of Fluid-Filled Grain Boundaries Measured Electrically during Active Pressure Solution. Earth and Planetary Science Letters, 200, 147-157. [CrossRef] [Google Scholar]
  • Dewers, T. and Ortoleva, P. (1990) A Coupled Reaction/ Transport/Mechanical Model for Intergranular Pressure Solution Stylolites, and Differential Compaction and Cementation in Clean Sandstones. Geochimica et Cosmochimica Acta, 54, 1609-1625. [CrossRef] [Google Scholar]
  • Dysthe, D.K., Podladchikov, Y., Renard, F., Feder J. and Jamtveit, B. (2002a) Universal Scaling in Transient Creep. Physical Review Letters, 89, Paper 246102. [Google Scholar]
  • Dysthe, D.,Renard, F.,Porcheron, F., and Rousseau, B. (2002b) Water in Mineral Interfaces - Molecular Simulations of Structure and Diffusion. Geophysical Research Letters, 29, 13208-13211. [CrossRef] [Google Scholar]
  • Gibbs, J.W. (1878) On the Equilibrium of Heterogeneous Substances. Trans. Conn. Academy, III. In: The Scientific Papers of J. Willard Gibbs, 1. Longman, Green, and Co., Toronto, 343-524. [Google Scholar]
  • Gratier, J.P. and Guiguet, R. (1986) Experimental Pressure Solution-Deposition on Quartz Grains: the Crucial Effect of the Nature of the Fluid. Journal of Structural Geology, 8, 845-856. [CrossRef] [Google Scholar]
  • Gratz, A.J. (1991) Solution-Transfer Compaction of Quartzites: Progress Towards a Rate Law. Geology, 19, 901-904. [CrossRef] [Google Scholar]
  • Gundersen, E.,Renard, F.,Dysthe, D.K.,Bjørlykke, K. and Jamtveit, B. (2002) Coupling between Pressure Solution and Mass Transport in Porous Rocks. Journal of Geophysical Research, 107, 2317, doi:10.1029/2001JB000287. [CrossRef] [Google Scholar]
  • Hales, B. and Emerson, S. (1997) Evidence in Support of First- Order Dissolution Kinetics of Calcite in Seawater. Earth and Planetary Science Letters, 148, 317-327. [CrossRef] [Google Scholar]
  • Hellmann, R., Renders, P., Gratier, J.P. and Guiguet, R. (2002a) Experimental Pressure Solution Compaction of Chalk in Aqueous Solutions. Part 1. Deformation Behavior and Chemistry. In: Water-Rock Interactions, Ore Deposits, and Environmental Geochemistry (Hellmann, R. and Wood, S.A. eds.), Special Publication Series, The Geochemical Society, 129-152. [Google Scholar]
  • Hellmann, R., Gaviglio, P., Renders, P., Gratier, J.P., Bekri, S. and Adler, P. (2002b) Experimental Pressure Solution Compaction of Chalk in Aqueous Solutions. Part 2. Deformation Examined by SEM, Porosimetry, Synthetic Permeability and X-Ray Computerized Tomography. In: Water-Rock Interactions, Ore Deposits, and Environmental Geochemistry (R. Hellmann, S.A. Wood eds.), Special Publication Series, The Geochemical Society, 153-178. [Google Scholar]
  • Heggheim, T., Madland, M.V., Risnes, R. and Austad, T., A Chemical Induced Enhanced Weakening of Chalk by Seawater. Journal of Petroleum Science and Engineering (in press). [Google Scholar]
  • Hickman, S., and Evans, B. (1992) Growth of Grain Contacts in Halite by Solution Transfer: Implications for Diagenesis, Lithification, and Strength Recovery. In: Fault Mechanics and Transport Properties of Rocks (Evans, B. and Wong T.F., eds.) Academic, San Diego, CA, 253-280. [Google Scholar]
  • Hickman, S. and Evans, B. (1995) Kinetics of Pressure Solution at Halite-Silica Interfaces and Intergranular Films. Journal of Geophysical Research, 100, 13113-13132. [CrossRef] [Google Scholar]
  • Homand, S.,Shao, J.F. and Schroeder, C. (1998) Plastic Modelling of Compressible Porous Chalk and Effect of Water Injection. Eurock'98, Trondheim, Norway, 2, 495-504. [Google Scholar]
  • Jones, M.E. and Leddra, M.J. (1989) Compaction and Flow Characteristics of Porous Chalks, Journée Craie, Université Lille, France. [Google Scholar]
  • Kamb, W.B. (1961) The Thermodynamic Theory of Nonhydrostatically Stressed Solids. Journal of Geophysical Research, 66, 259-271. [CrossRef] [Google Scholar]
  • Kervevan, C., Azaroual, M. and Durst, P. (2005) Improvments of the Calculation Accuracy of Acid Gas Solubility in Deep Reservoir Brines: Application to the Geological Storage of CO2. In press in this volume. [Google Scholar]
  • Langmuir, D. (1997) Aqueous Environmental Geochemistry, Prentice Hall, London. [Google Scholar]
  • Langtangen, H.P. (1999) Computational Partial Differential Equations, Springer, Berlin. [Google Scholar]
  • Lasaga, A. (1998) Kinetic Theory in the Earth Sciences, Princeton University Press, Princeton, N.J. [Google Scholar]
  • Lehner, F.K. (1995) A Model for Intergranular Pressure Solution in Open Systems. Tectonophysics, 245, 153-170. [CrossRef] [Google Scholar]
  • Lown, D.A.,Thirsk, H.R. and Wynne-Jones, L. (1968) Effect of Pressure on Ionization Equilibria in Water at 25°C. Transactions of the Faraday Society, 64, 2073-2080. [CrossRef] [Google Scholar]
  • Millero, F.J. (1982) The Effect of Pressure on the Solubility of Minerals in Water and Seawater. Geochimica et Cosmochimica Acta, 46, 11-22. [CrossRef] [Google Scholar]
  • Monjoie, A., Schroeder, C., Prignon, P., Yernaux, C., Silva, F.D. and Debande, G. (1990) Establishment of Constitutive Law of [Google Scholar]
  • Chalk and Long Term Test. 3rd North Sea Chalk Symposium, Copenhagen, Denmark, 1-17. [Google Scholar]
  • Morse, J.W. and Arvidson, R.S. (2002) The Dissolution Kinetics of Major Sedimentary Carbonate Minerals. Earth Science Reviews, 58, 51-84. [CrossRef] [Google Scholar]
  • Mucci, A. (1983) The Solubility of Calcite and Aragonite in Seawater at Various Salinities, Temperatures, and One Atmosphere Total Pressure. American Journal of Science, 283, 780-799. [CrossRef] [Google Scholar]
  • Nakashima, S. (1995) Diffusivity of Ions in Pore Water as a Quantitative Basis for Rock Deformation Rate Estimates. Tectonophysics, 245, 185-203. [CrossRef] [Google Scholar]
  • Nordstrom, D.K.,Plummer, L.N.,Langmuir, D.,Busenberg, E.,May, H.M.,Jones, B.F. and Parkhurst, D.L. (1990) Revised Chemical-Equilibrium Data for Major Water-Mineral Reactions and their Limitations. ACS Symposium Series, 416, 398-413. [CrossRef] [Google Scholar]
  • Ortoleva, P. (1994) Geochemical Self Organization, Oxford University Press, Oxford, UK. [Google Scholar]
  • Owen, B.B. and Brinkley, S.R. (1941) Calculation of the Effect of Pressure upon Ionic Equilibria in Pure Water and in Salt Solutions. Chemical Reviews, 29, 461-474. [CrossRef] [Google Scholar]
  • Paterson, M.S. (1973) Nonhydrostatic Thermodynamics and its Geologic Applications. Reviews of Geophysics and Space Physics, 11, 355-389. [CrossRef] [MathSciNet] [Google Scholar]
  • Piau, J.M. and Maury, V. (1995) Basic Mechanical Modelisation of Chalk/Water Interaction. In: Unsaturated Soils (Alonso and Delage, eds). [Google Scholar]
  • Plummer, L.N.,Wigley, T.M.L. and Parkhurst, D.L. (1978) The Kinetics of Calcite Dissolution in CO2 – Water Systems at 5 to 60°C and 0.0 to 1.0 atm CO2. American Journal of Science, 278, 179-216. [CrossRef] [Google Scholar]
  • Plummer, L.N. and Busenberg, E. (1982) The Solubilities of Calcite, Aragonite and Vaterite in CO2-H2O Solutions between 0 and 90°C and an Evaluation of the Aqueous Model for the System CaCO3-CO2-H2O. Geochimica et Cosmochimica Acta, 46, 1011-1040. [NASA ADS] [CrossRef] [Google Scholar]
  • Pokrovsky, O.S., Gobulev, S.V., and Schott, J. (2003-2004) Dissolution Kinetics of Calcite, Dolomite and Magnesite at 25°C and 1 to 50 atm pCO2. Chemical Geology, in press. [Google Scholar]
  • Renard, F.,Ortoleva, P. and Gratier, J.P. (1999) An Integrated Model for Transitional Pressure Solution in Sandstones. Tectonophysics, 312, 97-115. [CrossRef] [Google Scholar]
  • Renard, F.,Dysthe, D.,Feder, J.,Bjørlykke, K. and Jamtveit, B. (2001) Enhanced Pressure Solution Creep Rates Induced by Clay Particles: Experimental Evidence in Salt Aggregates. Geophysical Research Letters, 28, 1295-1298. [CrossRef] [Google Scholar]
  • Risnes, R. and Flaageng, O. (1999) Mechanical Properties of Chalk with Emphasis on Chalk-Fluid Interactions and Micromechanical Aspects. Oil & Gas Science and Technology, 54, 751-758. [CrossRef] [EDP Sciences] [Google Scholar]
  • Rutter, E.H. (1976) The Kinetics of Rock Deformation by Pressure Solution. Philosophical Transactions of the Royal Society of London, 283, 203-219. [CrossRef] [Google Scholar]
  • Schroeder, C. and Shao, J. (1996) Plastic Deformation and Capillary Effects in Chalks. 5th North Sea Chalk Symposium, Reims, France, 1-14. [Google Scholar]
  • Schutjens, P.M. and Spiers, C.S. (1999) Intergranular Pressure Soluion in NaCl: Grain-to-Grain Contact Experiments under the Optical Microscope. Oil & Gas Science and Technology, 54, 729-750. [CrossRef] [EDP Sciences] [Google Scholar]
  • Shao, J.F.,Bederiat, M. and Schroeder, C. (1994) Elastoviscoplastic Modelling of a Porous Chalk. Mechanics Res. Comm., 21, 63-75. [CrossRef] [Google Scholar]
  • Sjöberg, E.L. (1978) Kinetics and Mechanism of Calcite Dissolution in Aqueous Solutions at Low Temperatures. Stockholm Contributions to Geology, 32, 1-96. [Google Scholar]
  • Svensson, U. and Dreybrodt, W. (1992) Dissolution Kinetics of Natural Calcite Minerals in CO2-Water Systems Approaching Calcite Equilibrium. Chemical Geology, 100, 129-145. [CrossRef] [Google Scholar]
  • Spiers, C.J. and Brzesowsky, R.H. (1993) Densification Behaviour of Wet Granular Salt: Theory versus Experiment. Seventh Symposium of Salt, edited by H. Kakihana et al., Elsevier Science, New York, 1, 83-91. [Google Scholar]
  • Stumm, W. and Morgan, J. (1996) Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, Wiley, New York. [Google Scholar]
  • Tuncay, K.,Park, A. and Ortoleva, P. (2000) Sedimentary Basin Deformation: an Incremental Stress Approach. Tectonophysics, 323, 77-104. [CrossRef] [Google Scholar]
  • Wawersik, W.R., Franklin, M., Orr, Jr, Rudnicki, J.W., Ortoleva, P.J., Dove, P., Richter, F., Harris, J., Warpinski, N.R., Logan, J. M., Wilson, J.L., Pyrak-Nolte, L. and Wong, T.F. (2001) Terrestrial Sequestration of CO2: An Assessment of Research Needs. Advances in Geophysics, 43, Academic Press. [Google Scholar]
  • Weyl, P.K. (1959) Pressure Solution and the Force of Crystallization – a Phenomenological Theory. Journal of Geophysical Research, 69, 2001-2025. [CrossRef] [Google Scholar]
  • Wollast, R. (1990) Rate and Mechanism of Dissolution of Carbonates in the System CaCO3-MgCO3. In: Aquatic Chemical Kinetics (ed. W. Stumm), 431-445, John Wiley & Sons, New York. [Google Scholar]
  • Wolery, T.J. (1992) EQ3NR, A Computer Program for Geochemical Aqueous Speciation-Solubility Calculations: Theoretical Manual, User's Guide, and Related Documentation (Version 7.0), Lawrence Livermore Natl. Lab. UCRL-MA-110662 PT III. [Google Scholar]
  • Yasuhara, H.,Elsworth, D. and Polak, A. (2003) A Mechanistic Model for Compaction of Granular Aggregates Moderated by Pressure Solution. Journal of Geophysical Research, 108, 2530, doi, 10.1029/2003JB002536. [CrossRef] [Google Scholar]
  • Zhang, X., Salemans, J. Peach, C.J. and Spiers, C.J. (2002) Compaction Experiments on Wet Calcite Powder at Room Temperature: Evidence for Operation of Intergranular Pressure Solution. In: Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives (S. de Meer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock, eds.), Geological Society, London, Special Publications, 200, 29-39. [Google Scholar]
  • Zubtsov, S., Renard, F., Gratier, J.P., Guiguet, R. and Dysthe, D. (2004) Single-Contact Pressure Solution Experiments on Calcite. In: Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives (P. Cobbold and D. Gapais, eds.), Geological Society, London, Special Publication, in press. [Google Scholar]
  • Zuddas, P. and Mucci, A. (1998) Kinetics of Calcite Precipitation from Seawater II. The Influence of the Ionic Strength. Geochimica et Cosmochimica Acta, 62, 757-766. [CrossRef] [Google Scholar]
  • Zuddas, P.,Pachana, K. and Faivre, D. (2003) The Influence of Dissolved Humic Acids on the Kinetics of Calcite Precipitation from Seawater Solutions. Chemical Geology, 201, 91-101. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.