Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 60, Number 2, March-April 2005
Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Page(s) 401 - 415
DOI https://doi.org/10.2516/ogst:2005024
Published online 01 December 2006
  • Bethke, C.M. (1996) Geochemical reaction modeling. Oxford University Press, New York, 397 p. [Google Scholar]
  • Blanc, Ph. (1996) Organisation de l'empilement des minéraux interstratifiés illite/smectite : modélisation thermodynamique et application au domaine expérimental. PhD Thesis, UniversitƠLouis Pasteur de Strasbourg, 205 p. [Google Scholar]
  • Blanc, Ph.,Bieber, A.,Fritz, B. and Duplay, J. (1997) A short range interaction model applied to illite/smectite mixed-layer minerals. Phys. Chem. Minerals, 24, 574-581. [CrossRef] [Google Scholar]
  • Bourcier,W.L. (1985) Improvements in the solid solution modeling capabilities of the EQ3/6 geochemical code. Lawrence Livermore National Laboratory, UCID-20587, DE86 004494. [Google Scholar]
  • Brosse, E., Magnier, C. andVincent, B. (2005) Modelling fluid-rock interaction induced by the percolation of CO2-enriched solutions in core samples: 1. The role of reactive surface area. Oil & Gas Science and Technology - Rev. IFP, this issue. [Google Scholar]
  • Cassou, C. (2000) Modélisation numérique des interactions eauroche : optimisation du code de calcul DIAPHORE et application à la diagenèse minérale des réservoirs. PhD Thesis, Ecole Nationale Supérieure d'Arts et Métiers de Bordeaux, 171 p. [Google Scholar]
  • Denis, J. and Michard, G. (1983) Dissolution d'une solution solide : étude théorique et expérimentale. Bull. Minéral., 106, 309-319. [Google Scholar]
  • Fritz, B. (1975) Etude thermodynamique et simulation des réactions entre minéraux et solutions. Application à la géochimie des altérations et des eaux continentales. Sciences géologiques, Strasbourg, 41, 153 p. [Google Scholar]
  • Fritz, B. (1981) Etude thermodynamique et modélisation des réactions hydrothermales et diagénétiques. Sciences géologiques, Strasbourg, 65, 197 p. [Google Scholar]
  • Garrels, R.M. and Christ, C.L. (1965) Solutions, minerals and equilibria. Harper and Row, London. [Google Scholar]
  • Glynn, P.D. (1990) Modeling solid-solution aqueous-solution reactions in low-temperature aqueous systems. In Chemical modeling of aqueous systems II (Chapter 6), Bassett, R.L. and MELCHIOR, D. (eds.), Washington D.C., American Chemical Society Symposium Series, 416, 74-86. [CrossRef] [Google Scholar]
  • Glynn, P.D. and Reardon, E.J. (1990) Solid-solution aqueoussolution equilibria: Thermodynamic theory and representation. American Journal of Science, 290, 164-201. [CrossRef] [Google Scholar]
  • Guy, B. (2003) Use of chemical potential phase diagrams to discuss aqueous saturation and precipitation/dissolution kinetics of solid solutions. Abstract volume of the international conference "Gas-water rock interactions induced by reservoir exploitation, CO2 sequestration, and other geological storage" held at I.F.P., Rueil-Malmaison, France (18-20 November). [Google Scholar]
  • Helgeson, H.C. (1969) Thermodynamics of hydrothermal systems at elevated temperature and pressures. Am. Journal Sci., 267, 724-804. [CrossRef] [Google Scholar]
  • Kervevan, C., Azaroual, M. and Durst, P. (2005) Improvement of the calculation accuracy of acid gas solubility in deep reservoir brines: application to the geological storage of CO2. Oil & Gas Science and Technology − Rev. IFP, this issue. [Google Scholar]
  • LeGallo, Y.,Bildstein, O. and Brosse, E. (1998) Coupled reaction- flow modeling of diagenetic changes in reservoir permeability, porosity and mineral compositions. Journal of Hydrology, 209, 366-388. [CrossRef] [Google Scholar]
  • Lichtner, P. (1996) Continuum-formulation of multicomponentmultiphase reactive transport in porous media. In: Reactive transport in porous media, P.C. Lichtner, C.I. Steefel, E.H. Oelkers (Eds), Mineralogical Society of America, Reviews in Mineralogy, 34, 1−81. [Google Scholar]
  • Lietzke, M.H. and Stoughton, R.W. (1961) The calculation of activity coefficients from osmotic coefficients data. Jour. Chem. Phys., 65, 508−509. [CrossRef] [Google Scholar]
  • Lippmann, F. (1977) The solubility products of complex minerals, mixed crystals, and three-layer clay minerals. N. Jb. Miner. Abh., 130, 243−263. [Google Scholar]
  • Lippmann, F. (1980) Phase diagrams depicting aqueous solubility of binary mineral systems. N. Jb. Miner. Abh., 139, 1-25. [Google Scholar]
  • Lippmann, F. (1982) Stable and metastable solubility diagrams for the system CaCO3−MgCO3−H2O at ordinary temperature. Bull. Minéral., 105, 273−279. [Google Scholar]
  • Made, B. (1994) Empirical relations to estimate kinetic constants of silicates dissolution from crystallographic and energetic parameters. Mineralogical Magazine, V.M. Goldschmidt Conference, 58A, 547−548. [Google Scholar]
  • Michard, G. (1986) Dissolution d'une solution solide : compléments et corrections. Bull. Minéral., 109, 239−251. [Google Scholar]
  • Michard, G. (1989) Équilibres chimiques dans les eaux naturelles. Editions Publisud, 358 p. [Google Scholar]
  • Michau, N. (1997) Modélisation cinétique de la formation des argiles en fonction de leur composition et de leur morphologie. Application à la diagenèse des grès de la Mer du Nord. PHD Thesis, Université Louis Pasteur de Strasbourg, 184 p. [Google Scholar]
  • Nourtier-Mazauric, E. (2003) Modélisation géochimique et numérique des interactions entre des solutions solides et une solution aqueuse - Extension du logiciel de réaction-transport ARCHIMEDE et application à la diagenèse minérale des réservoirs. PHD Thesis, Université Jean Monnet et École Nationale Supérieure des Mines de Saint-Etienne, 203 p. [Google Scholar]
  • Pina, C.M.,Enders, M. and Putnis, A. (2000) The composition of solid solutions crystallising from aqueous solutions: the influence of supersaturation and growth mechanisms. Chemical Geology, 168, 195-210. [CrossRef] [Google Scholar]
  • Steefel, C.I. and van Cappellen, P. (1990)A newkinetic approach to modeling water-rock interaction: the role of nucleation, precursors, and Ostwald ripening. Geochim. Cosmochim. Acta, 54, 2657−2677. [Google Scholar]
  • Tardy, Y. and Fritz, B. (1981) An ideal solid solution model for calculating solubility of clay minerals. Clay minerals, 16, 361-373. [CrossRef] [Google Scholar]
  • Tardy, Y. and Garrels, R. M. (1974) A method of estimating the Gibbs energies of formation of layer silicates. Geochimica et Cosmochimica Acta, 38, 1101-1116. [CrossRef] [Google Scholar]
  • Thorstenson, D.C. and Plummer, L.N. (1977) Equilibrium criteria for two component solids reacting with fixed composition in aqueous phase. Example: the magnesian calcites. Am. J. Sci., 277, 1203−1223. [CrossRef] [Google Scholar]
  • Westall, J.C., Zachary, J.L. and Morel, F.M.M. (1976) MINEQL, a computer program for the calculation of chemical equilibrium composition of aqueous systems. Technical Note 18, Dept. Civil Eng., M.I.T., Cambridge, MA., 91 p. [Google Scholar]
  • Woods, T.L. and Garrels, R.M. (1992) Calculated solution-solid relations in the low temperature system CaO-MgO-FeO-CO2-H2O. Geochemica et Cosmochimica Acta, 56, 3031-3043. [CrossRef] [Google Scholar]
  • Xu, T.,Apps, J.A. and Pruess, K. (2004) Numerical simulation of CO2 disposal by mineral trapping in deep aquifers. Applied Geochemistry, 19, 917-936. [CrossRef] [Google Scholar]
  • Yeh, G.T. and Tripathi, V.S. (1989) A critical evaluation of recent developments in hydrogeochemical transport models of reactive multichemical components. Water Resources Research, 25, 1, 93−108. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.