Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 60, Number 2, March-April 2005
Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Page(s) 357 - 379
DOI https://doi.org/10.2516/ogst:2005022
Published online 01 December 2006
  • Aagaard, P. and Helgeson, H.C. (1982) Thermodynamic and Kinetic Constraints on Reaction Rates Among Minerals and Aqueous Solutions. I. Theoretical Considerations. American Journal of Science, 282, 237-285. [CrossRef] [Google Scholar]
  • Azaroual, M., Kervévan, C., Durance, M.V., Brochot, S. and Durst, P. (2004a) SCALE2000 (V3.1), User's Manual (in French), BRGM. ISBN 2-7159-0939-X. [Google Scholar]
  • Azaroual, M., Durst, P., Czernichowski-Lauriol, I., Olsen, D.N., Springer, N., Rochelle, C.A., Pearce, J., Bateman, K. and Birchall, D. (2004b) Geochemical Reactions Resulting from CO2 Injection into the Midale Formation, Weyburn Oilfield; A Laboratory Experimental and Modelling Study. Abstract Submitted to GHGT7 - 7th International Conference on Greenhouse Gas Control Technologies, Vancouver, Canada, 5-9 September. [Google Scholar]
  • Azaroual, M., Kerv赡n, C.,Durance, M.V. and Durst, P. (2004c) SCALE2000: A Reaction-Transport Software Dedicated to Thermo-Kinetic Prediction and Quantification of Scales. Applicability to Desalination Problems. Desalination, 156, 409-419. [CrossRef] [Google Scholar]
  • Bonijoly, D., Barbier, J., Robelin, C., Kervévan, C., Thi豹, D., Menjoz, A., Matray, J.M., Cotiche, C. and Herbrich, B. (2003) Feasibility of CO2 Storage in Geothermal Reservoirs. Example of the Paris Basin - France. BRGM-CFG-ANTEA Contribution to the GESTCO Project. BRGM Report RP-52349-FR. [Google Scholar]
  • Czernichowski-Lauriol, I., Rochelle, C.A., Brosse, É., Springer, N., Pearce, J.M., Bateman, K.A., Sanjuan, B. and Kervévan, C. (2001) Disposal of CO2 in Deep Aquifers: Investigations of Water-Rock-CO2 Interactions at Sleipner (North Sea) Within the SACS Project. EUG XI, 8-12 April, Strasbourg. [Google Scholar]
  • Demir, I. and Seyler, B. (1999) Chemical Composition and Geologic History of Saline Waters in Aux Vases and Cypress Formations, Illinois Basin. Aquatic Geochemistry, 5, 281-311. [CrossRef] [Google Scholar]
  • Drummond, S.E. (1981) Boiling and Mixing of Hydrothermal Fluids: Chemical Effects on Mineral Precipitation. PhD Thesis, Pennnsylvania State University. [Google Scholar]
  • Duan, Z.,Moller, N. and Weare, J.H. (1992a) An Equation of State for the CH4-CO2-H2O System: I. Pure Systems for 0 to 1000°C and 0 to 8000 bar. Geochimica et Cosmochimica Acta, 56, 2605-2617. [CrossRef] [Google Scholar]
  • Duan, Z.,Moller, N. and Weare, J.H. (1992b) An Equation of State for the CH4-CO2-H2O System: II. Mixture from 50 to 1000°C and 0 to 1000 bar. Geochimica et Cosmochimica Acta, 56, 2619-2631. [CrossRef] [Google Scholar]
  • Duan, Z. and Sun, R. (2003) An Improved Model Calculating CO2 Solubility in Pure Water and Aqueous NaCl Solutions from 273 to 5333 K and from 0 to 2000 bar. Chemical Geology, 193, 257-271. [CrossRef] [Google Scholar]
  • Gaus, I., Azaroual, M. and Czernichowski-Lauriol, I. (2005) Reactive Transport Modelling of the Impact of CO2 Injection on the Clayey Cap Rock at Sleipner (North Sea). Chemical Geology (in press). [Google Scholar]
  • Gunter, W.D.,Wiwchar, B. and Perkins, E.H. (1997) Aquifer Disposal of CO2-rich Greenhouse Gases: Extension of the Time Scale of Experiment for CO2-Sequestering Reactions by Geochemical Modelling. Mineralogical Petrology, 59, 121-140. [CrossRef] [Google Scholar]
  • Harvie, C.E.,Moller, N. and Weare, J.H. (1984) The Prediction of Mineral Solubilities in Natural Waters: The Na-K-Mg-Ca-H-Cl- SO4-OH-HCO3-CO3-CO2-H2O System to High Ionic Strengths at 25°C. Geochimica et Cosmochimica Acta, 48, 723-751. [CrossRef] [Google Scholar]
  • Helgeson, H.C., Kirkham, D.H. and Flowers, G.C. (1981) Theoretical Prediction of the Thermodynamic Behavior of Aqueous Electrolytes by High Pressures and Temperatures; IV, Calculation of Activity Coefficients, Osmotic Coefficients, and Apparent Molal and Standard and Relative Partial Molal Properties to 600°C and 5 kb. American Journal of Science, 281, 10, 1249-1516. [Google Scholar]
  • Hitchon, B.,Billings, G.K. and Klovan, J.E. (1971) Geochemistry and origin of Formation Waters in the Western Canada Sedimentary Basin - III. Factors Controlling Chemical Composition. Geochemica et Cosmochemica Acta, 35, 567-598. [CrossRef] [Google Scholar]
  • Johnson, J.W., Oelkers, E.H. and Helgeson, H.C. (1992) SUPCRT92; a Software Package for Calculating the Standard Molal Thermodynamic Properties of Minerals, Gases, Aqueous Species, and Reactions from 1 to 5000 bar and 0 to 1000 Degrees C. Computers and Geosciences, 18, 7, 899-947. [Google Scholar]
  • Kaszuba, J.P.,Janecky, D.R. and Snow, M.G. (2003) Carbon Dioxide Reaction Processes in a Model Brine Aquifer at 200°C and 200 bar: Implications for Geologic Sequestration of Carbon. Applied Geochemistry, 18, 1065-1080 [CrossRef] [Google Scholar]
  • Kelly, W.C.,Rye, R.O. and Livnat, A. (1986) Saline Minewaters of the Keweenaw Peninsula, Northern Michigan: their Nature, Origin, and Relation to Similar Deep Waters in Precambrian Crystalline Rocks of the Canadian Shield. American Journal of Sciences, 286, 281-308. [Google Scholar]
  • Kervévan, C.,Thiéry, D. and Baranger, P. (1998) SCS: Specific Chemical Simulators Dedicated to Chemistry-transport Coupled Modelling: Part III. Coupling of SCS with the Hydro-transport Modelling Software MARTHE. Mineralogical Magazine, 62A, 773-774. [CrossRef] [Google Scholar]
  • Kharaka, Y.K., Gunter, W.D., Aggarwal, P.K., Perkins, E.H. and De Braal, J.D. (1988) SOLMINEQ.88: A Computer Program Code for Geochemical Modeling of Water-Rock Interactions. US Geological Survey Water-Resources Investigations, Report 88-4227. [Google Scholar]
  • Land, L.S. (1995) Na-Ca-Cl Saline Formation Waters, Frio Formation (Oligocene), South Texas, USA: Products of Diagenesis. Geochemica et Cosmochemica Acta, 59, 11, 2163-2174. [CrossRef] [MathSciNet] [Google Scholar]
  • Langmuir, D. and Melchior, D. (1985) The Geochemistry of Ca, Sr, Ba and Ra Sulfates in some Deep Brines from the Palo Duro Basin, Texas. Geochemica et Cosmochemica Acta, 49, 2423-2432. [CrossRef] [Google Scholar]
  • Lasaga, A.C. (1984) Chemical Kinetics of Water-Rock Interactions. Journal of Geophysical Research, 89, 4009-4025. [CrossRef] [Google Scholar]
  • Leach, D.L.,Plumlee, G.S.,Hofstra, A.H.,Landis, G.P.,Rowan, E.L. and Viets, J.G. (1991) Origin of Late Dolomite Cement by CO2-saturaed Deep Basin Brines: Evidence from the Ozark Region, Central United States. Geology, 19, 348-351. [CrossRef] [Google Scholar]
  • Lee, B.I. and Kesler, M.G. (1975) A Generalised Thermodynamic Correlation Based on Three-Parameter Corresponding States. American Institute of Chemical Engineers Journal, 21, 510-527. [CrossRef] [Google Scholar]
  • Malinin, S.D. and Kurovskaya, N.A. (1975) The Solubility of CO2 in Chloride Solutions at Elevated Temperatures and CO2 Pressures. Geochem. Int., 12, 199-201. [Google Scholar]
  • Martel, A.T.,Gibling, M.R. and Nguyen, M. (2001) Brines in the Carboniferous Sydney Coalfield, Atlantic Canada. Applied Geochemistry, 16, 35-55. [CrossRef] [Google Scholar]
  • Moldovanyi, E.P. and Walter, L.M. (1992) Regional Trends in Water Chemistry, Smackover Formation, Southwest Arkansas: Geochemical and Physical Controls. American Association of Petroleum Geologists Bulletin, 76, 864-894. [Google Scholar]
  • Monnin, C. (1990) The Influence of Pressure on the Activity Coefficients of the Solutes and on the Solubility of Minerals in the System Na-Ca-Cl-SO4-H2O to 200°C and 1 kbar and to High NaCl Concentration. Geochimica et Cosmochimica Acta, 54, 3265-3282. [CrossRef] [Google Scholar]
  • Monnin, C. (1994) Density Calculation and Concentration Scale Conversions for Natural Waters. Computers and Geosciences, 20, 1435-1445. [CrossRef] [Google Scholar]
  • Parkhurst, D.L. and Appelo, C.A.J. (1999) User's guide to PHREEQC (version 2) -A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, US Geological Survey Water-Resources Investigations, Report 99-4259. [Google Scholar]
  • Pitzer, K.S. (1973) Thermodynamics of Electrolytes. I. Theoretical Basis and General Equations. Journal of Physical Chemistry, 12, 268-277. [CrossRef] [Google Scholar]
  • Rumpf, B. and Maurer, G. (1993) An Experimental and Theoretical Investigation on the Solubility of Carbon Dioxide in Aqueous Solutions of Strong Electrolytes. Berichte der Bunsen- Gesellschaft - Physical Chemistry, 97, 85-97. [CrossRef] [Google Scholar]
  • Stueber, A.M.,Saller, A.H. and Ishida, H. (1998) Origin, Migration, and Mixing of Brines in the Permian Basin: Geochemical Evidence from the Eastern Central Basin Platfrom, Texas. American Association of Petroleum Geologists Bulletin, 82, 9, 1652-1672. [Google Scholar]
  • Takenouchi, S. and Kennedy, G.C. (1964) The Solubility of Carbon Dioxide in NaCl Solution at High Temperatures and Pressures. American Journal of Science, 263, 445-454. [CrossRef] [Google Scholar]
  • Wolery, T.J. (1992) EQ3/6, a Software Package for Geochemical Modeling of Aqueous Systems: Package Overview and Installation Guide (version 7.2b), Lawrence Livermore National Laboratory, Livermore, California. [Google Scholar]
  • Xu, T.,Apps, J.A. and Pruess, K. (2004) Numerical Simulation of CO2 Disposal by Mineral Trapping in Deep Aquifers. Applied Geochemistry, 19, 917-936. [CrossRef] [Google Scholar]
  • Yasunichi, Y. and Yoshida, F. (1979) Solubility of Carbon Dioxide in Aqueous Electrolyte Solutions. Journal of Chemical Engineering Data, 24, 11-14. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.