Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP
Volume 60, Numéro 2, March-April 2005
Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Page(s) 381 - 399
DOI https://doi.org/10.2516/ogst:2005023
Publié en ligne 1 décembre 2006
  • Alcantar, N.,Israelachvili, J. and Boles, J. (2003) Forces and Ionic Transport between Mica Surfaces: Implications for Pressure Solution. Geochimica et Cosmochimica Acta, 67, 1289-1304. [CrossRef] [Google Scholar]
  • Arakaki, T. and Mucci, A. (1995) A Continuous and Mechanistic Representation of Calcite Reaction-Controlled Kinetics in Dilute Solutions at 25°C and 1 atm total pressure. Aquatic Geochemistry, 1, 105-130. [CrossRef] [Google Scholar]
  • Berner, R. and Morse, J.W. (1974) Dissolution Kinetics of Calcium Carbonate in Sea Water. IV. Theory of Calcite Dissolution. American Journal Science, 274, 108-134. [CrossRef] [Google Scholar]
  • Botter, B.J. (1985) Pore Collapse Measurements on Chalk Cores. 2nd North Sea Chalk Symposium, Deauville, France. [Google Scholar]
  • Busenberg, E. and Plummer, L.N. (1986) A Comparative Study of the Dissolution and Crystal Growth Kinetics of Calcite and Aragonite. In: Studies in Diagenesis, F.A. Mupton (ed.), US Geol. Surv. Bull., 1578, 139-168. [Google Scholar]
  • Cubillas, P., Prieto, M., Köhler, S. and Oelkers, E.H., (2004) Coupled Dissolution/Precipitation Rates in the System CaCO3- CdCO3. In: Water-Rock Interaction (Wanty, R. and Seal II, R., eds.), A.A. Balkema, Leiden, 714-744. [Google Scholar]
  • da Silva, F., Monjoie, A., Debande, G., Schroeder, C., Poot, B., Detiege, C. and Halleux, L. (1985) Mechanical Behaviour of Chalks. 2nd North Sea Chalk Symposium, Stavanger, Norway, 2, 1-10. [Google Scholar]
  • de Meer, S.,Spiers, C. J.,Peach, C. J. and Watanabe, T. (2002) Diffusive Properties of Fluid-Filled Grain Boundaries Measured Electrically during Active Pressure Solution. Earth and Planetary Science Letters, 200, 147-157. [CrossRef] [Google Scholar]
  • Dewers, T. and Ortoleva, P. (1990) A Coupled Reaction/ Transport/Mechanical Model for Intergranular Pressure Solution Stylolites, and Differential Compaction and Cementation in Clean Sandstones. Geochimica et Cosmochimica Acta, 54, 1609-1625. [CrossRef] [Google Scholar]
  • Dysthe, D.K., Podladchikov, Y., Renard, F., Feder J. and Jamtveit, B. (2002a) Universal Scaling in Transient Creep. Physical Review Letters, 89, Paper 246102. [Google Scholar]
  • Dysthe, D.,Renard, F.,Porcheron, F., and Rousseau, B. (2002b) Water in Mineral Interfaces - Molecular Simulations of Structure and Diffusion. Geophysical Research Letters, 29, 13208-13211. [CrossRef] [Google Scholar]
  • Gibbs, J.W. (1878) On the Equilibrium of Heterogeneous Substances. Trans. Conn. Academy, III. In: The Scientific Papers of J. Willard Gibbs, 1. Longman, Green, and Co., Toronto, 343-524. [Google Scholar]
  • Gratier, J.P. and Guiguet, R. (1986) Experimental Pressure Solution-Deposition on Quartz Grains: the Crucial Effect of the Nature of the Fluid. Journal of Structural Geology, 8, 845-856. [CrossRef] [Google Scholar]
  • Gratz, A.J. (1991) Solution-Transfer Compaction of Quartzites: Progress Towards a Rate Law. Geology, 19, 901-904. [CrossRef] [Google Scholar]
  • Gundersen, E.,Renard, F.,Dysthe, D.K.,Bjørlykke, K. and Jamtveit, B. (2002) Coupling between Pressure Solution and Mass Transport in Porous Rocks. Journal of Geophysical Research, 107, 2317, doi:10.1029/2001JB000287. [CrossRef] [Google Scholar]
  • Hales, B. and Emerson, S. (1997) Evidence in Support of First- Order Dissolution Kinetics of Calcite in Seawater. Earth and Planetary Science Letters, 148, 317-327. [CrossRef] [Google Scholar]
  • Hellmann, R., Renders, P., Gratier, J.P. and Guiguet, R. (2002a) Experimental Pressure Solution Compaction of Chalk in Aqueous Solutions. Part 1. Deformation Behavior and Chemistry. In: Water-Rock Interactions, Ore Deposits, and Environmental Geochemistry (Hellmann, R. and Wood, S.A. eds.), Special Publication Series, The Geochemical Society, 129-152. [Google Scholar]
  • Hellmann, R., Gaviglio, P., Renders, P., Gratier, J.P., Bekri, S. and Adler, P. (2002b) Experimental Pressure Solution Compaction of Chalk in Aqueous Solutions. Part 2. Deformation Examined by SEM, Porosimetry, Synthetic Permeability and X-Ray Computerized Tomography. In: Water-Rock Interactions, Ore Deposits, and Environmental Geochemistry (R. Hellmann, S.A. Wood eds.), Special Publication Series, The Geochemical Society, 153-178. [Google Scholar]
  • Heggheim, T., Madland, M.V., Risnes, R. and Austad, T., A Chemical Induced Enhanced Weakening of Chalk by Seawater. Journal of Petroleum Science and Engineering (in press). [Google Scholar]
  • Hickman, S., and Evans, B. (1992) Growth of Grain Contacts in Halite by Solution Transfer: Implications for Diagenesis, Lithification, and Strength Recovery. In: Fault Mechanics and Transport Properties of Rocks (Evans, B. and Wong T.F., eds.) Academic, San Diego, CA, 253-280. [Google Scholar]
  • Hickman, S. and Evans, B. (1995) Kinetics of Pressure Solution at Halite-Silica Interfaces and Intergranular Films. Journal of Geophysical Research, 100, 13113-13132. [CrossRef] [Google Scholar]
  • Homand, S.,Shao, J.F. and Schroeder, C. (1998) Plastic Modelling of Compressible Porous Chalk and Effect of Water Injection. Eurock'98, Trondheim, Norway, 2, 495-504. [Google Scholar]
  • Jones, M.E. and Leddra, M.J. (1989) Compaction and Flow Characteristics of Porous Chalks, Journée Craie, Université Lille, France. [Google Scholar]
  • Kamb, W.B. (1961) The Thermodynamic Theory of Nonhydrostatically Stressed Solids. Journal of Geophysical Research, 66, 259-271. [CrossRef] [Google Scholar]
  • Kervevan, C., Azaroual, M. and Durst, P. (2005) Improvments of the Calculation Accuracy of Acid Gas Solubility in Deep Reservoir Brines: Application to the Geological Storage of CO2. In press in this volume. [Google Scholar]
  • Langmuir, D. (1997) Aqueous Environmental Geochemistry, Prentice Hall, London. [Google Scholar]
  • Langtangen, H.P. (1999) Computational Partial Differential Equations, Springer, Berlin. [Google Scholar]
  • Lasaga, A. (1998) Kinetic Theory in the Earth Sciences, Princeton University Press, Princeton, N.J. [Google Scholar]
  • Lehner, F.K. (1995) A Model for Intergranular Pressure Solution in Open Systems. Tectonophysics, 245, 153-170. [CrossRef] [Google Scholar]
  • Lown, D.A.,Thirsk, H.R. and Wynne-Jones, L. (1968) Effect of Pressure on Ionization Equilibria in Water at 25°C. Transactions of the Faraday Society, 64, 2073-2080. [CrossRef] [Google Scholar]
  • Millero, F.J. (1982) The Effect of Pressure on the Solubility of Minerals in Water and Seawater. Geochimica et Cosmochimica Acta, 46, 11-22. [CrossRef] [Google Scholar]
  • Monjoie, A., Schroeder, C., Prignon, P., Yernaux, C., Silva, F.D. and Debande, G. (1990) Establishment of Constitutive Law of [Google Scholar]
  • Chalk and Long Term Test. 3rd North Sea Chalk Symposium, Copenhagen, Denmark, 1-17. [Google Scholar]
  • Morse, J.W. and Arvidson, R.S. (2002) The Dissolution Kinetics of Major Sedimentary Carbonate Minerals. Earth Science Reviews, 58, 51-84. [CrossRef] [Google Scholar]
  • Mucci, A. (1983) The Solubility of Calcite and Aragonite in Seawater at Various Salinities, Temperatures, and One Atmosphere Total Pressure. American Journal of Science, 283, 780-799. [CrossRef] [Google Scholar]
  • Nakashima, S. (1995) Diffusivity of Ions in Pore Water as a Quantitative Basis for Rock Deformation Rate Estimates. Tectonophysics, 245, 185-203. [CrossRef] [Google Scholar]
  • Nordstrom, D.K.,Plummer, L.N.,Langmuir, D.,Busenberg, E.,May, H.M.,Jones, B.F. and Parkhurst, D.L. (1990) Revised Chemical-Equilibrium Data for Major Water-Mineral Reactions and their Limitations. ACS Symposium Series, 416, 398-413. [CrossRef] [Google Scholar]
  • Ortoleva, P. (1994) Geochemical Self Organization, Oxford University Press, Oxford, UK. [Google Scholar]
  • Owen, B.B. and Brinkley, S.R. (1941) Calculation of the Effect of Pressure upon Ionic Equilibria in Pure Water and in Salt Solutions. Chemical Reviews, 29, 461-474. [CrossRef] [Google Scholar]
  • Paterson, M.S. (1973) Nonhydrostatic Thermodynamics and its Geologic Applications. Reviews of Geophysics and Space Physics, 11, 355-389. [CrossRef] [MathSciNet] [Google Scholar]
  • Piau, J.M. and Maury, V. (1995) Basic Mechanical Modelisation of Chalk/Water Interaction. In: Unsaturated Soils (Alonso and Delage, eds). [Google Scholar]
  • Plummer, L.N.,Wigley, T.M.L. and Parkhurst, D.L. (1978) The Kinetics of Calcite Dissolution in CO2 – Water Systems at 5 to 60°C and 0.0 to 1.0 atm CO2. American Journal of Science, 278, 179-216. [Google Scholar]
  • Plummer, L.N. and Busenberg, E. (1982) The Solubilities of Calcite, Aragonite and Vaterite in CO2-H2O Solutions between 0 and 90°C and an Evaluation of the Aqueous Model for the System CaCO3-CO2-H2O. Geochimica et Cosmochimica Acta, 46, 1011-1040. [NASA ADS] [CrossRef] [Google Scholar]
  • Pokrovsky, O.S., Gobulev, S.V., and Schott, J. (2003-2004) Dissolution Kinetics of Calcite, Dolomite and Magnesite at 25°C and 1 to 50 atm pCO2. Chemical Geology, in press. [Google Scholar]
  • Renard, F.,Ortoleva, P. and Gratier, J.P. (1999) An Integrated Model for Transitional Pressure Solution in Sandstones. Tectonophysics, 312, 97-115. [CrossRef] [Google Scholar]
  • Renard, F.,Dysthe, D.,Feder, J.,Bjørlykke, K. and Jamtveit, B. (2001) Enhanced Pressure Solution Creep Rates Induced by Clay Particles: Experimental Evidence in Salt Aggregates. Geophysical Research Letters, 28, 1295-1298. [CrossRef] [Google Scholar]
  • Risnes, R. and Flaageng, O. (1999) Mechanical Properties of Chalk with Emphasis on Chalk-Fluid Interactions and Micromechanical Aspects. Oil & Gas Science and Technology, 54, 751-758. [CrossRef] [EDP Sciences] [Google Scholar]
  • Rutter, E.H. (1976) The Kinetics of Rock Deformation by Pressure Solution. Philosophical Transactions of the Royal Society of London, 283, 203-219. [Google Scholar]
  • Schroeder, C. and Shao, J. (1996) Plastic Deformation and Capillary Effects in Chalks. 5th North Sea Chalk Symposium, Reims, France, 1-14. [Google Scholar]
  • Schutjens, P.M. and Spiers, C.S. (1999) Intergranular Pressure Soluion in NaCl: Grain-to-Grain Contact Experiments under the Optical Microscope. Oil & Gas Science and Technology, 54, 729-750. [CrossRef] [EDP Sciences] [Google Scholar]
  • Shao, J.F.,Bederiat, M. and Schroeder, C. (1994) Elastoviscoplastic Modelling of a Porous Chalk. Mechanics Res. Comm., 21, 63-75. [CrossRef] [Google Scholar]
  • Sjöberg, E.L. (1978) Kinetics and Mechanism of Calcite Dissolution in Aqueous Solutions at Low Temperatures. Stockholm Contributions to Geology, 32, 1-96. [Google Scholar]
  • Svensson, U. and Dreybrodt, W. (1992) Dissolution Kinetics of Natural Calcite Minerals in CO2-Water Systems Approaching Calcite Equilibrium. Chemical Geology, 100, 129-145. [CrossRef] [Google Scholar]
  • Spiers, C.J. and Brzesowsky, R.H. (1993) Densification Behaviour of Wet Granular Salt: Theory versus Experiment. Seventh Symposium of Salt, edited by H. Kakihana et al., Elsevier Science, New York, 1, 83-91. [Google Scholar]
  • Stumm, W. and Morgan, J. (1996) Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, Wiley, New York. [Google Scholar]
  • Tuncay, K.,Park, A. and Ortoleva, P. (2000) Sedimentary Basin Deformation: an Incremental Stress Approach. Tectonophysics, 323, 77-104. [CrossRef] [Google Scholar]
  • Wawersik, W.R., Franklin, M., Orr, Jr, Rudnicki, J.W., Ortoleva, P.J., Dove, P., Richter, F., Harris, J., Warpinski, N.R., Logan, J. M., Wilson, J.L., Pyrak-Nolte, L. and Wong, T.F. (2001) Terrestrial Sequestration of CO2: An Assessment of Research Needs. Advances in Geophysics, 43, Academic Press. [Google Scholar]
  • Weyl, P.K. (1959) Pressure Solution and the Force of Crystallization – a Phenomenological Theory. Journal of Geophysical Research, 69, 2001-2025. [CrossRef] [Google Scholar]
  • Wollast, R. (1990) Rate and Mechanism of Dissolution of Carbonates in the System CaCO3-MgCO3. In: Aquatic Chemical Kinetics (ed. W. Stumm), 431-445, John Wiley & Sons, New York. [Google Scholar]
  • Wolery, T.J. (1992) EQ3NR, A Computer Program for Geochemical Aqueous Speciation-Solubility Calculations: Theoretical Manual, User's Guide, and Related Documentation (Version 7.0), Lawrence Livermore Natl. Lab. UCRL-MA-110662 PT III. [Google Scholar]
  • Yasuhara, H.,Elsworth, D. and Polak, A. (2003) A Mechanistic Model for Compaction of Granular Aggregates Moderated by Pressure Solution. Journal of Geophysical Research, 108, 2530, doi, 10.1029/2003JB002536. [CrossRef] [Google Scholar]
  • Zhang, X., Salemans, J. Peach, C.J. and Spiers, C.J. (2002) Compaction Experiments on Wet Calcite Powder at Room Temperature: Evidence for Operation of Intergranular Pressure Solution. In: Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives (S. de Meer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock, eds.), Geological Society, London, Special Publications, 200, 29-39. [Google Scholar]
  • Zubtsov, S., Renard, F., Gratier, J.P., Guiguet, R. and Dysthe, D. (2004) Single-Contact Pressure Solution Experiments on Calcite. In: Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives (P. Cobbold and D. Gapais, eds.), Geological Society, London, Special Publication, in press. [Google Scholar]
  • Zuddas, P. and Mucci, A. (1998) Kinetics of Calcite Precipitation from Seawater II. The Influence of the Ionic Strength. Geochimica et Cosmochimica Acta, 62, 757-766. [CrossRef] [Google Scholar]
  • Zuddas, P.,Pachana, K. and Faivre, D. (2003) The Influence of Dissolved Humic Acids on the Kinetics of Calcite Precipitation from Seawater Solutions. Chemical Geology, 201, 91-101. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.