Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 60, Number 2, March-April 2005
Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Page(s) 339 - 355
DOI https://doi.org/10.2516/ogst:2005021
Published online 01 December 2006
  • Anderson, G.M. and Crerar, D.A. (1993) Thermodynamics in Geochemistry. The Equilibrium Model, Oxford University Press, New York, Oxford.
  • Bamberger, A.,Sieder, G. and Maurer, G. (2000) High pressure (vapor + liquid) equilibrium in binary mixtures of (carbon dioxide + water or acetic acid) at temperatures from 313 to 353 K. J. Supercritical Fluids, 17, 97-110. [CrossRef]
  • Barrett, T.J.,Anderson, G.M. and Lugowski, J. (1988) The solubility of hydrogen sulphide in 0-5 m NaCl solutions at 25-95°C and one atmosphere. Geochim. Cosmochim. Acta, 52, 807-811. [CrossRef]
  • Battistelli, A., Calore, C. and Pruess, K (1997) The simulator TOUGH2/EWASG for modelling geothermal reservoirs with brines and non-condensible gas. Geothermics, 26, 437-464.
  • Briones, J.A.,Mullins, J.C., and Thies, M.C. (1987) Ternary phase equilibria for acetic acid-water mixtures with supercritical carbon dioxide. Fluid Phase Equilib., 36, 235-246. [CrossRef]
  • Carroll, J. and Mather, A.E. (1992) The system carbon-dioxidewater and the Krichevsky-Kasarnovsky equation. Journal of Solution Chemistry, 21, 7, 607-621. [CrossRef]
  • Carroll, J. and Mather, A.E. (1993) Fluid phase equilibria in the system hydrogen sulphide-water at high pressure. Application of an extended Henry's law. Chem. Eng. Technol., 16, 200-205. [CrossRef]
  • Clarke, E.C.W. and Glew, D.N. (1971) Aqueous nonelectrolyte solutions. Part VIII. Deuterium and hydrogen sulfides in deuterium oxide and water. Can. Jour. Chem., 49, 691-698. [CrossRef]
  • Crovetto, R. (1991) Evaluation of solubility data of the system CO2-H2O from 273 K to the critical point of water. J. Phys. Chem. Ref. Data, 20, 576-589. [CrossRef]
  • Dhorn, R.,Devlieghere, F., and Thelen, D. (1993) Experimental measurements of phase equilibria for ternary and quaternary systems of glucose, water, CO2 and ethanol with a novel apparatus. Fluid Phase Equilib., 83, 149-158. [CrossRef]
  • Diamond, L.W. and Akinfiev, N.N. (2003) Solubility of CO2 in water from –1.5 to 100°C from 0.1 to 100 MPa: evaluation of literature data and thermodynamic modelling. Fluid Phase Equilib., 208, 265-290. [CrossRef]
  • Douabul, A.A. and Riley, J.P. (1979) The solubility of gases in distilled water and seawater. V. Hydrogen sulphide. Deep-Sea Res., 26 A, 259-268.
  • Drummond, S.E. (1981) Boiling and mixing of hydrothermal fluids: chemical effects on mineral precipitation. PhD Thesis, Pennsylvania State University.
  • Drummond, S.E. and Ohmoto, H. (1985) Chemical evolution and mineral deposition in boiling hydrothermal systems. Econ. Geol., 80, 126-147. [CrossRef]
  • D’Souza, R.,Patrick, J.R., and Teja, A.S. (1998) High pressure phase equilibria in the carbon dioxide-n-hexadecane and carbon dioxide-water systems. Can. J. Chem. Eng., 66, 319-323. [CrossRef]
  • Duan, Z.,Møller, N.,Greenberg, J., and Weare, J.H. (1992) The prediction of methane solubility in natural waters to high ionic strength from 0 to 250°C and from 0 to 1600 bar. Geochim. Cosmochim. Acta, 56, 1451-1460. [CrossRef]
  • Duan, Z.,Møller, N. and Weare, J.H. (1996) Prediction of the solubility of H2S in NaCl aqueous solution: an equation of state approach. Chemical Geology, 130, 15-20. [CrossRef]
  • Dubessy, J.,Buschaert S.,Lamb, W.,Pironon, J. and Thiéry, R. (2001) Methane-bearing aqueous fluid inclusions: Raman analysis, thermodynamic modelling and application to petroleum basins. Chem. Geol., 173, 193-205. [CrossRef]
  • Gamsjäger, H. and Schindler, P. (1969) Löslichkeiten und Aktivitätskoeffizienten von H2S in Elektrolytmischungen. Helv. Chim. Acta, 52, 1395-1402. [CrossRef]
  • Gillepsie, P.C. and Wilson, G.M. (1982) Vapor-liquid and liquidliquid equilibria: water-methane, water-carbon dioxide, waterhydrogen sulfide, water-npentane, water-methane-npentane. Research Report RR-48, Gas Processors Association, Tulsa, Oklahoma.
  • Guillaume, D.,Teinturier, S.,Dubessy, J. and Pironon, J. (2003) Calibration of methane analysis by Raman spectroscopy in H2ONaCl- CH4 fluid inclusions. Chem. Geol. 194, 41-49. [CrossRef]
  • Haas, J.L. (1976) Physical properties of the coexisting phases and thermochemical properties of the H2O component in boiling NaCl solutions. Geological Survey Bulletin 1421-A.
  • Harvey, A.H. (1996) Semi-empirical correlation for Henry's constants over large temperature ranges. AIChE. J., 42, 1491-1494. [CrossRef]
  • Kendall, J. and Andrews, J.C. (1921). The solubilities of acids in aqueous solutions of other acids. J. Am. Chem. Soc., 43, 1545-1560. [CrossRef]
  • King, M.B.,Mubarak, A.,Kim, J.D., and Bott, T.R. (1992) The mutual solubilities of water with supercritical and liquid carbon dioxide. J. Supercrit. Fluids, 5, 296-302. [CrossRef]
  • Kozintseva, T.N. (1964) Solubility of hydrogen sulfides in water at elevated temperatures. Geochem. Int., 1, 750-756.
  • Lee, J.I. and Mather, A.E. (1977) Solubility of hydrogen sulfide in water. Ber. Bunsenges. Phys. Chem., 81, 1020-1023. [CrossRef]
  • Lewis, G.N., Randall, M., Pitzer, K.S. and Brewer, L. (1961) Thermodynamics, McGraw-Hill, New York.
  • Malinin, S.D. and Savelyeva, N.I. (1972) The solubility of CO2 in NaCl and CaCl2 solutions at 25, 50 and 75°C under elevated CO2 pressures. Geochem. Int., 9, 410-418.
  • Malinin, S.D. and Kurovskova, N.I. (1975) Solubility of CO2 in chloride solutions at elevated temperatures and CO2 pressures. Geochem. Int., 12, 199-201.
  • Matous, J.,Sobr, J.,Novak, J.P. and Pick, J. (1969) Solubility of carbon dioxide in water at pressures up to 40 atm. Collection Czechoslov. Cem. Commun., 34, 3982-3985. [CrossRef]
  • Müller, G.,Bende, E. and Maurer, G. (1988) Das Dampfflüssigkeitsgleichgewicht des ternären systems Ammoniak- Kohlendioxide-Wasser bei hohen Wassergehalten im Berich zwischen 373 und 473 Kelvin. Ber. Bunsenges. Phys. Chem., 92, 148-160. [CrossRef]
  • Nighswander, J.A.,Kalogerakis, N. and Mehrotra, A.K. (1989) Solubilities of carbon dioxide in water and 1 wt % NaCl solution at pressures up to 10 MPa and temperatures from 80 to 200°C. J. Chem. Eng. Data, 34, 355-360. [CrossRef]
  • Pichavant, M.,Ramboz, C. and Weisbrod, A. (1982) Fluid immiscibility in natural processes: use and misuse of fluid inclusion data. I. Phase equilibria analysis – A theoretical and geometrical approach. Chem. Geol., 37, 1-28. [CrossRef]
  • Plyasunov, A.V.,O’Connell, J.P.,Wood, R.H. and Shock, E.L. (2000a) Infinite dilution partial molar properties of aqueous solutions of nonelectrolytes. I. Equations for partial molar volumes at infinite dilution and standard thermodynamic functions of hydration of volatile nonelectrolytes over wide ranges of conditions. Geochim. Cosmochim. Acta, 64, 495-512. [CrossRef]
  • Plyasunov, A.V.,O’Connell, J.P.,Wood, R.H. and Shock, E.L. (2000b) Infinite dilution partial molar properties of aqueous solutions of nonelectrolytes. II. Equations for the standard thermodynamic functions of hydration of volatile nonelectrolytes over wide ranges of conditions including subcritical temperatures. Geochim. Cosmochim. Acta, 64, 2779-2795. [CrossRef]
  • Prausnitz, J.M., Lichtenthaler, R.N. and Gomes de Azevedo, E. (1986) Molecular Thermodynamics of Fluid-Phase Equilibria, Second Edition, Prentice-Hall, Englewood Cliffs, New Jersey.
  • Prini, R.F. and Crovetto, R. (1989) Evaluation of data on solubility of simple apolar gases in light and heavy water at high temperature. J. Phys. Chem. Ref. Data, 18, 1231-1243. [CrossRef]
  • Prutton, C.F. and Savage, R.L. (1945) The solubility of carbon dioxide in water and calcium chloride solutions. J. Am. Chem. Soc., 67, 1150-1154. [CrossRef]
  • Ramboz, C.,Pichavant, M. and Weisbrod, A. (1982) Fluid immiscibility in natural processes: use and misuse of fluid inclusion data. II. Interpretation of fluid inclusion data in terms of immiscibility. Chem. Geol., 37, 29-48. [CrossRef]
  • Reed, M.H. and Spycher, N.F. (1985) Boiling, cooling, and oxidation in epithermal systems: a numerical modeling approach. In: Geology and Geochemistry of Epithermal Systems, Berger, B.R. and Bethke, P.M. (eds.), Reviews in Economic Geology, 2, 249-272.
  • Rumpf, B.,Nicolaisen, H.,Ocal, C. and Maurer, G. (1994) Solubility of carbon dioxide in aqueous solutions of sodium chloride: experimental results and correlation. J. Solution Chem., 23, 431-448. [CrossRef]
  • Sako, T.,Sugeta, T.,Nkasawa, N.,Obuko, T.,Sato, M.,Taguchi, T. and Hiaki, T. (1991) Phase equilibrium study of extraction and concentration of furfural produced in reactor using supercritical carbon dioxide. Jour. Chem. Engineering Japan, 24, 449-454. [CrossRef]
  • Selleck, F.T.,Carmichael, L.T. and Sage, B.H. (1952) Phase behavior in the hydrogen sulfide-water system. Ind. Eng. Chem., 44, 2219-2226. [CrossRef]
  • Shmulovich, K.I., Tkachenko, S.I. and Plyasunova, N.V. (1995) Phase equilibria in fluid systems at high pressures and temperatures. In: Fluids in the Crust – Equilibrium and Transport Properties, Shmulovich, K.I., Yardley, B.W.D. and Gonchar, G.G. (eds.), Chapman & Hall, London.
  • Silvester, F. and Pitzer, K. (1977) Thermodynamics of electrolytes. 8. High-temperature properties, including enthalpy and heat capacity, with application to sodium chloride. Jour. Phys. Chem., 81, 1822-1828. [CrossRef]
  • Stryjek, R. and Vera, J.H. (1986a) An improved Peng-Robinson equation of state for pure compounds and mixtures. Can. J. Chem. Eng., 64, 323-333. [CrossRef]
  • Stryjek, R. and Vera, J.H. (1986b) An improved Peng-Robinson equation of state with new mixing rules for strongly non ideal mixtures. Can. J. Chem. Eng., 64, 334-340. [CrossRef]
  • Stryjek, R. and Vera, J.H. (1986c) A cubic equation of state for accurate vapor-liquid equilibria calculations. Can. J. Chem. Eng., 64, 820-826. [CrossRef]
  • Suleimenov, O.M. and Krupp, R.E. (1994) Solubility of hydrogen sulfide in pure water and in NaCl solutions, from 20 to 320°C and at saturation pressures. Geochim. Cosmochim. Acta, 58, 2433-2444. [CrossRef]
  • Takenouchi, S. and Kennedy, G.C. (1964) The binary system H2O-CO2 at high temperatures and pressures. Am. J. Sci., 262, 1055-1072. [CrossRef]
  • Tödheide, K., and Franck, E.U. (1963) Das Zweipahsengebiet und die kritische Kurve im system Kohlendioxid-Wasser bis zu Drucken von 3600 bar. Z. Phys. Chemie. Neue Folge, 37, 387-401. [CrossRef]
  • Wiebe, R. and Gaddy, V.L. (1939) The solubility of carbon dioxide at 50, 75, and 100°, at pressures to 700 atmospheres. J. Am. Chem. Soc., 61, 315-318. [CrossRef]
  • Wiebe, R. and Gaddy, V.L. (1941) Vapor phase composition of carbon dioxide-water mixtures at various temperatures and at pressures to 700 atmospheres. J. Am. Chem. Soc., 63, 475-477. [CrossRef]
  • Wright, R.H. and Maas, O. (1932) The solubility of hydrogen sulphide in water from the vapor pressures of the solutions. Can. J. Res., 6, 94-101. [CrossRef]
  • Zawisza, A. and Malesinska, B. (1981) Solubility of carbon dioxide in liquid water and of water in gaseous carbon dioxide in the range 0.2-5 MPa and at temperatures up to 473 K. J. Chem. Eng. Data, 26, 388-391. [CrossRef]
  • Zel’vinskii, Y. (1937) Carbon dioxide solubility in water under pressure. Zhurn. Khim. Prom., 14, 1250-1257.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.