Regular Article
Effects of hydrogen blending on hydraulic and thermal characteristics of natural gas pipeline and pipe network
1
School of Mechanical Engineering, Beijing Key Laboratory of Pipeline Critical Technology and Equipment for Deepwater Oil and Gas Development, Beijing Institute of Petrochemical Technology, Beijing 102617, PR China
2
Beijing Key Laboratory of Process Fluid Filtration and Separation, College of Mechanical and Transportation Engineering, China University of Petroleum (Beijing), Beijing 102249, PR China
* Corresponding author: lijingfa@bipt.edu.cn
Received:
20
July
2021
Accepted:
20
September
2021
Blending a fraction of hydrogen into the natural gas pipeline or urban pipe network is an efficient approach for hydrogen delivery. In this paper, the mathematical model of Hydrogen-Blended Natural Gas (HBNG) transportation is established, and the influences of hydrogen blending on hydraulic and thermal characteristics of natural gas pipeline and pipe network are numerically investigated. The impact of hydrogen blending ratio on the performance of centrifugal compressor and the operating point for joint operation of pipeline and compressor is discussed. Results illustrate that compared with natural gas without hydrogen, the hydrogen blending can reduce the pipeline friction resistance and increase the volume flow rate. However, due to the lower volumetric calorific value of HBNG, the energy flow rate actually decreases under the same transportation condition. Meanwhile, the temperature drop along the pipeline slows down due to the blended hydrogen. The performance degradation of centrifugal compressor occurs with the increasing hydrogen blending ratio, and the operating point for joint operation of pipeline and centrifugal compressor moves to the direction of higher volume flow rate and lower pressure. This study is expected to shed a light on the hydrogen delivery by natural gas pipelines and pipe networks.
© H. Zhang et al., published by IFP Energies nouvelles, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.