Advanced modeling and simulation of flow in subsurface reservoirs with fractures and wells for a sustainable industry
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Advanced modeling and simulation of flow in subsurface reservoirs with fractures and wells for a sustainable industry
Numéro d'article 80
Nombre de pages 17
DOI https://doi.org/10.2516/ogst/2020078
Publié en ligne 9 novembre 2020
  • Cipolla C.L., Lolon E., Erdle J.C., Rubin B. (2010) Reservoir modeling in shale-gas reservoirs, SPE Reserv. Eval. Eng. 13, 4, 638–653. [Google Scholar]
  • Nikolaev M.Y., Kazak A.V. (2019) Liquid saturation evaluation in organic-rich unconventional reservoirs: A comprehensive review, Earth-Sci. Rev. 194, 327–349. [CrossRef] [Google Scholar]
  • Zhang T., Sun S., Song H. (2019) Flow mechanism and simulation approaches for shale gas reservoirs: A review, Transport Porous Med. 126, 3, 655–681. [CrossRef] [Google Scholar]
  • Berkowitz B. (2002) Characterizing flow and transport in fractured geological media: A review, Adv. Water Resour. 25, 8–12, 861–884. [Google Scholar]
  • Prats M. (1961) Effect of vertical fractures on reservoir behavior-incompressible fluid case, SPE J. 1, 2, 105–108. [Google Scholar]
  • Raghavan R., Joshi S. (1993) Productivity of multiple drainholes or fractured horizontal wells, SPE Form. Eval. 8, 1, 11–16. [CrossRef] [Google Scholar]
  • Valko P.P., Economides M.J. (1998) Heavy crude production from shallow formations: long horizontal wells versus horizontal fractures, in: Proceedings of the SPE International Conference on Horizontal Well Technology, 1–4 November, Calgary, Alberta, Canada, Society of Petroleum Engineers, pp. 1–11. [Google Scholar]
  • Romero D.J., Valko P.P., Economides M.J. (2002) The optimization of the productivity index and the fracture geometry of a stimulated well with fracture face and choke skins, SPE Prod. Facil. 18, 1, 455–466. [Google Scholar]
  • Luo W., Wang X., Feng Y., Tang C., Zhou Y. (2016) Productivity analysis for a vertically fractured well under non-Darcy flow condition, J. Petrol. Sci. Eng. 146, 714–725. [CrossRef] [Google Scholar]
  • Hagoort J. (2011) Semisteady-state productivity of a well in a rectangular reservoir producing at constant rate or constant pressure, SPE Reserv. Eval. Eng. 14, 6, 677–686. [CrossRef] [Google Scholar]
  • Jia P., Cheng L.S., Huang S.J., Wu Y. (2016) A semi-analytical model for the flow behavior of naturally fractured formations with multi-scale fracture networks, J. Hydrol. 537, 208–220. [CrossRef] [Google Scholar]
  • Johansen T.E., Hender D.G., James L.A. (2016) Productivity index for arbitrary well trajectories in laterally isotropic, spatially anisotropic porous media, SPE J. 22, 2, 1–13. [Google Scholar]
  • Shi J., Wang S., Xu X., Sun Z., Li J., Meng Y. (2016) A semianalytical productivity model for a vertically fractured well with arbitrary fracture length under complex boundary conditions, SPE J. 23, 6, 1–23. [Google Scholar]
  • Medeiros F., Ozkan E., Kazemi H. (2008) Productivity and drainage area of fractured horizontal wells in tight gas reservoir, SPE Reserv. Eval. Eng. 11, 5, 902–911. [CrossRef] [Google Scholar]
  • Bhattacharya S., Nikolaou M., Economides M. (2012) Unified Fracture Design for very low permeability reservoirs, J Nat. Gas Sci. Eng. 9, 184–195. [Google Scholar]
  • Al Rbeawi S., Tiab D. (2013) Predicting productivity index of hydraulically fractured formations, J. Petrol. Sci. Eng. 112, 185–197. [CrossRef] [Google Scholar]
  • Wang J., Jia A. (2014) A general productivity model for optimization of multiple fractures with heterogeneous properties, J. Nat. Gas Sci. Eng. 21, 608–624. [Google Scholar]
  • Kaul S.P., Vaz R.F., Gildin E. (2016) Dimensionless productivity index and its derivative – a new approach to analyzing unconventional reservoirs, in: Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference, Unconventional Resources Technology Conference, 1–3 August, San Antonio, Texas, USA, pp. 1–20. [Google Scholar]
  • Al Rbeawi S. (2018) Productivity-index behavior for hydraulically fractured reservoirs depleted by constant production rate considering transient-state and semisteady-state conditions, SPE Prod. Oper. 33, 4, 1–21. [Google Scholar]
  • Sorek N., Moreno J.A., Rice R., Luo G. (2018) Productivity-maximized horizontal-well design with multiple acute-angle transverse fractures, SPE J. 23, 5, 1–13. [CrossRef] [Google Scholar]
  • Wang J., Wei Y., Luo W. (2019) A unified approach to optimize fracture design of a horizontal well intercepted by primary-and secondary-fracture networks, SPE J. 24, 3, 1–18. [CrossRef] [Google Scholar]
  • Asadi M.B., Ameri M.J., Amini S., Zendehboudi S. (2018) Determination of performance of multiple-fracture horizontal well by incorporating fracture-fluid leakoff, SPE J. 21, 4, 1–21. [Google Scholar]
  • Guk V., Tuzovskiy M., Wolcott D., Mach J. (2019) Optimizing the number of fractures in a horizontal well, SPE J. 24, 3, 1–14. [CrossRef] [Google Scholar]
  • Asadi M., Zendehboudi S. (2019) Evaluation of productivity index in unconventional reservoir systems: an extended distributed volumetric sources method, J. Nat. Gas Sci. Eng. 61, 1–17. [Google Scholar]
  • Smith L., Schwartz F.W. (1984) An analysis of the influence of fracture geometry on mass transport in fractured media, Water Resour. Res. 20, 9, 1241–1252. [Google Scholar]
  • Fisher M.K., Wright C.A., Davidson B.M., Goodwin A.K., Fielder E.O., Buckler W.S., Steinsberger N.P. (2002) Integrating fracture mapping technologies to optimize stimulations in the Barnett Shale, in: Proceedings of the SPE Annual Technical Conference and Exhibition, 29 September–2 October, San Antonio, Texas, Society of Petroleum Engineers, pp. 1–7. [Google Scholar]
  • Marechal J.C., Dewandel B. (2004) Use of hydraulic tests at different scales to characterize fracture network properties in the weathered-fractured layer of a hard rock aquifer, Water Resour. Res. 40, 11, 1–17. [Google Scholar]
  • Benedict D., Miskimins J. (2009) Analysis of reserve recovery potential from hydraulic fracture reorientation in tight gas Lenticular reservoir, in: Proceedings of the SPE Hydraulic Fracturing Technology Conference, 19–21 January, The Woodlands, Texas, Society of Petroleum Engineers, pp. 351–359. [Google Scholar]
  • Luo W., Wang X., Tang C., Feng Y. (2017) Productivity of multiple fractures in a closed rectangular reservoir, J. Petrol. Sci. Eng. 157, 232–247. [CrossRef] [Google Scholar]
  • Zhou W., Banerjee R., Poe B., Spath J., Thambynayagam M. (2013) Semianalytical production simulation of complex hydraulic-fracture networks, SPE J. 19, 1, 6–18. [CrossRef] [Google Scholar]
  • Gringarten A.C., Ramey H.J. (1973) The use of source and Green’s functions in solving unsteady-flow problems in reservoirs, SPE J. 13, 5, 285–296. [Google Scholar]
  • Ozkan E. (1988) Performance of horizontal wells, PhD Thesis, Tulsa University, United States of America. [Google Scholar]
  • Fen C.S., Yeh H.D. (2012) Effect of well radius on drawdown solutions obtained with Laplace transform and Green’s function, Water Resour. Manag. 26, 2, 377–390. [CrossRef] [Google Scholar]
  • Wang J.H., Wang X.D., Dong W.X. (2017) Rate decline curves analysis of multiple-fractured horizontal wells in heterogeneous reservoirs, J. Hydrol. 553, 527–539. [CrossRef] [Google Scholar]
  • Biryukov D., Kuchuk F.J. (2012) Transient pressure behavior of reservoirs with discrete conductive faults and fractures, Transport Porous Med. 95, 1, 239–268. [CrossRef] [Google Scholar]
  • Ren F., Ma G.W., Fan L.F., Wang Y., Zhu H. (2017) Equivalent discrete fracture networks for modeling fluid flow in highly fractured rock mass, Eng. Geol. 229, 21–30. [Google Scholar]
  • Wang X. (2006) Fundamental mechanics of fluid flow in porous media, Petroleum Industry Press, Beijing, China. [Google Scholar]
  • Karimi-Fard M., Durlofsky L.J. (2016) A general gridding, discretization, and coarsening methodology for modeling flow in porous formations with discrete geological features, Adv. Water Resour. 96, 354–372. [Google Scholar]
  • Luo W., Tang C. (2015) A semianalytical solution of a vertical fractured well with varying conductivity under non-Darcy-flow condition, SPE J. 20, 5, 1028–1040. [CrossRef] [Google Scholar]
  • Xu W., Wang X., Xing G., Wang J. (2017) Pressure-transient analysis for a vertically fractured well at an arbitrary azimuth in a rectangular anisotropic reservoir, J. Petrol. Sci. Eng. 159, 279–294. [CrossRef] [Google Scholar]
  • Wu S., Xing G., Cui Y., Wang B., Shi M., Wang M. (2019) A semi-analytical model for pressure transient analysis of hydraulic reorientation fracture in an anisotropic reservoir, J. Petrol. Sci. Eng. 179, 228–243. [CrossRef] [Google Scholar]
  • Wang X., Zhang Y., Liu C. (2004) Productivity evaluation and conductivity optimization for vertically fractured wells, Petrol. Explor. Dev. 31, 6, 78–81. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.