Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Numéro d'article 79
Nombre de pages 15
Publié en ligne 9 novembre 2020
  • Galdi G.P., Robertson A.M. (2005) On flow of a navier–stokes fluid in curved pipes. Part I: Steady flow, Appl. Math. Lett. 18, 10, 1116–1124. doi: 10.1016/j.aml.2004.11.004. [Google Scholar]
  • Lahbabi A., Chang H.C. (1986) Flow in periodically constricted tubes: Transition to inertial and nonsteady flows, Chem. Eng. Sci. 41, 2487–2505. [Google Scholar]
  • Bernabé Y., Olson J.F. (2000) The hydraulic conductance of a capillary with a sinusoidally varying cross-section, Geophys. Res. Lett. 27, 2, 245–248. doi: 10.1029/1999GL010842. [Google Scholar]
  • Payatakes A.C., Tien C., Turian R.M. (1973) A new model for granular porous media: Part i. model formulation, AIChE J. 19, 1, 58–67. doi: 10.1002/aic.690190110. [Google Scholar]
  • Payatakes A.C., Tien C., Turian R.M. (1973) A new model for granular porous media: Part ii. numerical solution of steady state incompressible newtonian flow through periodically constricted tubes, AIChE J. 19, 1, 67–76. doi: 10.1002/aic.690190111. [Google Scholar]
  • Koplik J. (1982) Creeping flow in two-dimensional networks, J. Fluid Mech. 119, 219–247. doi: 10.1017/S0022112082001323. [Google Scholar]
  • Chidamoio J., Akanji L., Rafati R. (2017) Prediction of optimum length to diameter ratio for two-phase fluid flow development in vertical pipes, Adv. Pet. Explor. Develop. 14, 1, 1–17. [Google Scholar]
  • Hernandez A. (2016) Fundamentals of gas lift engineering: Well design and troubleshooting, Elsevier. [Google Scholar]
  • Al-Atabi M., Al-Zuhair S., Chin S.B., Luo X.Y. (2006) Pressure drop in laminar and turbulent flows in circular pipe with baffles – an experimental and analytical study, Int. J. Fluid Mech. Res. 33, 4, 303–319. doi: 10.1615/InterJFluidMechRes.v33.i4.10. [CrossRef] [Google Scholar]
  • Al-Atabi M., Al-Zuhair S., Chin S.B., Luo X.Y. (2010) Flow of non-newtonian fluids in porous media, J. Polym. Sci. 48, 23, 2437–2467. [CrossRef] [Google Scholar]
  • Sochi T. (2015) Flow of navier-stokes fluids in cylindrical elastic tubes, J. Appl. Fluid Mech. 8, 2, 181–188. [CrossRef] [Google Scholar]
  • Sabooniha E., Rokhforouz M.R., Ayatollahi S. (2019) Pore-scale investigation of selective plugging mechanism in immiscible two-phase flow using phase-field method, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 74, 78. doi: 10.2516/ogst/2019050. [CrossRef] [Google Scholar]
  • Sisavath S., Jing X., Zimmerman R.W. (2001) Creeping flow through a pipe of varying radius, Phys. Fluids 13, 10, 2762–2772. doi: 10.1063/1.1399289. [CrossRef] [Google Scholar]
  • Tilton J.N., Payatakes A.C. (1984) Collocation solution of creeping newtonian flow through sinusoidal tubes: A correction, AIChE J. 30, 6, 1016–1021. doi: 10.1002/aic.690300628. [Google Scholar]
  • Deiber J.A., Schowalter W.R. (1979) Flow through tubes with sinusoidal axial variations in diameter, AIChE J. 25, 4, 638–645. doi: 10.1002/aic.690250410. [Google Scholar]
  • Hemmat M., Borhan A. (1995) Creeping flow through sinusoidally constricted capillaries, Phys. Fluids 7, 9, 2111–2121. doi: 10.1063/1.868462. [CrossRef] [Google Scholar]
  • Sirisup S., Karniadakis G.E., Saelim N., Rockwell D. (2004) Dns and experiments of flow past a wired cylinder at low reynolds number, Eur. J. Mech. – B/Fluids 23, 1, 181–188. doi: 10.1016/j.euromechflu.2003.04.003. [CrossRef] [Google Scholar]
  • Ge M., Xu C. (2010) Direct numerical simulation of flow in channel with time-dependent wall geometry, Appl. Math. Mech. 31, 1, 97–108. doi: 10.1007/s10483-010-0110-x. [Google Scholar]
  • Ould-Rouiss M., Redjem-Saad L., Lauriat G. (2009) Direct numerical simulation of turbulent heat transfer in annuli: Effect of heat flux ratio, Int. J. Heat Fluid Flow 30, 4, 579–589. doi: 10.1016/j.ijheatfluidflow.2009.02.018. [Google Scholar]
  • Tamano S., Itoh M., Hoshizaki K., Yokota K. (2007) Direct numerical simulation of the drag-reducing turbulent boundary layer of viscoelastic fluid, Phys. Fluids 19, 7, 75–106. doi:10.1063/1.2749816. [Google Scholar]
  • Zhu Z., Yang H., Chen T. (2009) Direct numerical simulation of turbulent flow in a straight square duct at reynolds number 600, J. Hydrodyn. Ser. B 21, 5, 600–607. doi: 10.1016/S1001-6058(08)60190-0. [CrossRef] [Google Scholar]
  • Li D., Fan J., Luo K., Cen K. (2011) Direct numerical simulation of a particle-laden low reynolds number turbulent round jet, Int. J. Multiph. Flow 37, 6, 539–554. doi: 10.1016/j.ijmultiphaseflow.2011.03.013. [CrossRef] [Google Scholar]
  • Li B., Liu N., Lu X. (2006) Direct numerical simulation of wall-normal rotating turbulent channel flow with heat transfer, Int. J. Heat Mass Trans. 49, 5, 1162–1175. doi: 10.1016/j.ijheatmasstransfer.2005.08.030. [CrossRef] [Google Scholar]
  • Stüben K. (2001) A review of algebraic multigrid, J. Comput. Appl. Math. 128, 1, 281–309. doi: 10.1016/S0377-0427(00)00516-1. ID: 271610. [Google Scholar]
  • Guet S., Ooms G., Oliemans R.V.A., Mudde R.F. (2003) Bubble injector effect on the gaslift efficiency, AIChE J. 49, 9, 2242–2252. [Google Scholar]
  • Batchelor G.K. (1967) An introduction to fluid dynamics, Cambridge University Press. [Google Scholar]
  • Akanji L.T., Matthai S.K. (2010) Finite element-based characterization of pore-scale geometry and its impact on fluid flow, Transp. Porous Media 81, 2, 241–259. doi: 10.1007/s11242-009-9400-7. [Google Scholar]
  • Babuvška I., Rheinboldt W.C. (1978) Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15, 4, 736–754. doi: 10.1137/071504. [Google Scholar]
  • Smith I.M., Griffiths D.V., Margetts L. (2013) Programming the finite element method, John Wiley & Sons. [Google Scholar]
  • Matthäi S.K., Geiger S., Roberts S.G. (2001) Complex Systems Platform: CSP3D3.0 user’s guide, ETH Zurich Research Collection. [Google Scholar]
  • Matthai S.K., Roberts S.G. (1996) The influence of fault permeability on single-phase fluid flow near fault-sand intersections: Results from steady-state high-resolution models of pressure-driven fluid flow, Assoc. Pet. Geol. Bull. 80, 11, 1763–1779. [Google Scholar]
  • Garcia X., Akanji L.T., Blunt M.J., Matthai S.K., Latham J.P. (2009) Numerical study of the effects of particle shape and polydispersity on permeability, Phys. Rev. E 80, 021304. doi: 10.1103/PhysRevE.80.021304. [Google Scholar]
  • Akanji L.T., Nasr G., Matthai S.K. (2013) Estimation of hydraulic anisotropy of unconsolidated granular packs using finite element methods, Int. J. Multiphys. 7, 2, 153–166. [Google Scholar]
  • Chidamoio J.F. (2018) Experimental and numerical modelling of gaslift cavitation and instabilities in oil producing wells, PhD Thesis, Petroleum Engineering Division, University of Aberdeen. [Google Scholar]
  • Anderson A.E., Ellis B.J., Weiss J.A. (2007) Verification, validation and sensitivity studies in computational biomechanics, Comput. Meth. Biomech. Biomed. Eng. 10, 3, 171–184. [CrossRef] [Google Scholar]
  • Shao N., Salman W., Gavriilidis A., Angeli P. (2008) Cfd simulations of the effect of inlet conditions on taylor flow formation, Int. J. Heat Fluid Flow 296, 1603–1611. [Google Scholar]
  • Kroll N., Gerhold Th., Melber S., Heinrich R., Schwarz Th., Schöning B. (2002) Parallel large scale computations for aerodynamic aircraft design with the German CFD system megaflow, in Wilders P., Ecer A., Satofuka N., Periaux J., Fox P. (eds), Parallel Computational Fluid Dynamics 2001, North-Holland, Amsterdam, pp. 227–236. doi: 10.1016/B978-044450672-6/50080-3. [CrossRef] [Google Scholar]
  • Inc ANSYS (2013) ANSYS FLUENT 12.0 user’s guide, ANSYS, Canonsburg, Pennsylvania, United States. [Google Scholar]
  • Fletcher D.F., McClure D.D., Kavanagh J.M., Barton G.W. (2017) Cfd simulation of industrial bubble columns: Numerical challenges and model validation successes, Appl. Math. Model. 44, 25–42. doi: 10.1016/j.apm.2016.08.033. [Google Scholar]
  • Frey P.-J., Alauzet F. (2005) Anisotropic mesh adaptation for cfd computations, Comput. Meth. Appl. Mech. Eng. 194, 48–49, 5068–5082. [CrossRef] [Google Scholar]
  • Alauzet F., Loseille A. (2016) A decade of progress on anisotropic mesh adaptation for computational fluid dynamics, Comput.-Aid. Design 72, 13–39. doi: 10.1016/j.cad.2015.09.005. [CrossRef] [Google Scholar]
  • Papoutsakis A., Sazhin S.S., Begg S., Danaila I., Luddens F. (2018) An efficient adaptive mesh refinement (amr) algorithm for the discontinuous galerkin method: Applications for the computation of compressible two-phase flows, J. Comput. Phys. 363, 399–427. doi: 10.1016/ [Google Scholar]
  • Alauzet F., Loseille A., Olivier G. (2018) Time-accurate multi-scale anisotropic mesh adaptation for unsteady flows in CFD, J. Comput. Phys. 373, 28–63. doi: 10.1016/ [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.