Advanced modeling and simulation of flow in subsurface reservoirs with fractures and wells for a sustainable industry
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Advanced modeling and simulation of flow in subsurface reservoirs with fractures and wells for a sustainable industry
Article Number 80
Number of page(s) 17
DOI https://doi.org/10.2516/ogst/2020078
Published online 09 November 2020
  • Cipolla C.L., Lolon E., Erdle J.C., Rubin B. (2010) Reservoir modeling in shale-gas reservoirs, SPE Reserv. Eval. Eng. 13, 4, 638–653. [CrossRef] [Google Scholar]
  • Nikolaev M.Y., Kazak A.V. (2019) Liquid saturation evaluation in organic-rich unconventional reservoirs: A comprehensive review, Earth-Sci. Rev. 194, 327–349. [CrossRef] [Google Scholar]
  • Zhang T., Sun S., Song H. (2019) Flow mechanism and simulation approaches for shale gas reservoirs: A review, Transport Porous Med. 126, 3, 655–681. [CrossRef] [Google Scholar]
  • Berkowitz B. (2002) Characterizing flow and transport in fractured geological media: A review, Adv. Water Resour. 25, 8–12, 861–884. [Google Scholar]
  • Prats M. (1961) Effect of vertical fractures on reservoir behavior-incompressible fluid case, SPE J. 1, 2, 105–108. [Google Scholar]
  • Raghavan R., Joshi S. (1993) Productivity of multiple drainholes or fractured horizontal wells, SPE Form. Eval. 8, 1, 11–16. [CrossRef] [Google Scholar]
  • Valko P.P., Economides M.J. (1998) Heavy crude production from shallow formations: long horizontal wells versus horizontal fractures, in: Proceedings of the SPE International Conference on Horizontal Well Technology, 1–4 November, Calgary, Alberta, Canada, Society of Petroleum Engineers, pp. 1–11. [Google Scholar]
  • Romero D.J., Valko P.P., Economides M.J. (2002) The optimization of the productivity index and the fracture geometry of a stimulated well with fracture face and choke skins, SPE Prod. Facil. 18, 1, 455–466. [Google Scholar]
  • Luo W., Wang X., Feng Y., Tang C., Zhou Y. (2016) Productivity analysis for a vertically fractured well under non-Darcy flow condition, J. Petrol. Sci. Eng. 146, 714–725. [CrossRef] [Google Scholar]
  • Hagoort J. (2011) Semisteady-state productivity of a well in a rectangular reservoir producing at constant rate or constant pressure, SPE Reserv. Eval. Eng. 14, 6, 677–686. [CrossRef] [Google Scholar]
  • Jia P., Cheng L.S., Huang S.J., Wu Y. (2016) A semi-analytical model for the flow behavior of naturally fractured formations with multi-scale fracture networks, J. Hydrol. 537, 208–220. [CrossRef] [Google Scholar]
  • Johansen T.E., Hender D.G., James L.A. (2016) Productivity index for arbitrary well trajectories in laterally isotropic, spatially anisotropic porous media, SPE J. 22, 2, 1–13. [Google Scholar]
  • Shi J., Wang S., Xu X., Sun Z., Li J., Meng Y. (2016) A semianalytical productivity model for a vertically fractured well with arbitrary fracture length under complex boundary conditions, SPE J. 23, 6, 1–23. [Google Scholar]
  • Medeiros F., Ozkan E., Kazemi H. (2008) Productivity and drainage area of fractured horizontal wells in tight gas reservoir, SPE Reserv. Eval. Eng. 11, 5, 902–911. [CrossRef] [Google Scholar]
  • Bhattacharya S., Nikolaou M., Economides M. (2012) Unified Fracture Design for very low permeability reservoirs, J Nat. Gas Sci. Eng. 9, 184–195. [Google Scholar]
  • Al Rbeawi S., Tiab D. (2013) Predicting productivity index of hydraulically fractured formations, J. Petrol. Sci. Eng. 112, 185–197. [CrossRef] [Google Scholar]
  • Wang J., Jia A. (2014) A general productivity model for optimization of multiple fractures with heterogeneous properties, J. Nat. Gas Sci. Eng. 21, 608–624. [Google Scholar]
  • Kaul S.P., Vaz R.F., Gildin E. (2016) Dimensionless productivity index and its derivative – a new approach to analyzing unconventional reservoirs, in: Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference, Unconventional Resources Technology Conference, 1–3 August, San Antonio, Texas, USA, pp. 1–20. [Google Scholar]
  • Al Rbeawi S. (2018) Productivity-index behavior for hydraulically fractured reservoirs depleted by constant production rate considering transient-state and semisteady-state conditions, SPE Prod. Oper. 33, 4, 1–21. [Google Scholar]
  • Sorek N., Moreno J.A., Rice R., Luo G. (2018) Productivity-maximized horizontal-well design with multiple acute-angle transverse fractures, SPE J. 23, 5, 1–13. [CrossRef] [Google Scholar]
  • Wang J., Wei Y., Luo W. (2019) A unified approach to optimize fracture design of a horizontal well intercepted by primary-and secondary-fracture networks, SPE J. 24, 3, 1–18. [CrossRef] [Google Scholar]
  • Asadi M.B., Ameri M.J., Amini S., Zendehboudi S. (2018) Determination of performance of multiple-fracture horizontal well by incorporating fracture-fluid leakoff, SPE J. 21, 4, 1–21. [Google Scholar]
  • Guk V., Tuzovskiy M., Wolcott D., Mach J. (2019) Optimizing the number of fractures in a horizontal well, SPE J. 24, 3, 1–14. [CrossRef] [Google Scholar]
  • Asadi M., Zendehboudi S. (2019) Evaluation of productivity index in unconventional reservoir systems: an extended distributed volumetric sources method, J. Nat. Gas Sci. Eng. 61, 1–17. [Google Scholar]
  • Smith L., Schwartz F.W. (1984) An analysis of the influence of fracture geometry on mass transport in fractured media, Water Resour. Res. 20, 9, 1241–1252. [Google Scholar]
  • Fisher M.K., Wright C.A., Davidson B.M., Goodwin A.K., Fielder E.O., Buckler W.S., Steinsberger N.P. (2002) Integrating fracture mapping technologies to optimize stimulations in the Barnett Shale, in: Proceedings of the SPE Annual Technical Conference and Exhibition, 29 September–2 October, San Antonio, Texas, Society of Petroleum Engineers, pp. 1–7. [Google Scholar]
  • Marechal J.C., Dewandel B. (2004) Use of hydraulic tests at different scales to characterize fracture network properties in the weathered-fractured layer of a hard rock aquifer, Water Resour. Res. 40, 11, 1–17. [Google Scholar]
  • Benedict D., Miskimins J. (2009) Analysis of reserve recovery potential from hydraulic fracture reorientation in tight gas Lenticular reservoir, in: Proceedings of the SPE Hydraulic Fracturing Technology Conference, 19–21 January, The Woodlands, Texas, Society of Petroleum Engineers, pp. 351–359. [Google Scholar]
  • Luo W., Wang X., Tang C., Feng Y. (2017) Productivity of multiple fractures in a closed rectangular reservoir, J. Petrol. Sci. Eng. 157, 232–247. [CrossRef] [Google Scholar]
  • Zhou W., Banerjee R., Poe B., Spath J., Thambynayagam M. (2013) Semianalytical production simulation of complex hydraulic-fracture networks, SPE J. 19, 1, 6–18. [CrossRef] [Google Scholar]
  • Gringarten A.C., Ramey H.J. (1973) The use of source and Green’s functions in solving unsteady-flow problems in reservoirs, SPE J. 13, 5, 285–296. [Google Scholar]
  • Ozkan E. (1988) Performance of horizontal wells, PhD Thesis, Tulsa University, United States of America. [Google Scholar]
  • Fen C.S., Yeh H.D. (2012) Effect of well radius on drawdown solutions obtained with Laplace transform and Green’s function, Water Resour. Manag. 26, 2, 377–390. [CrossRef] [Google Scholar]
  • Wang J.H., Wang X.D., Dong W.X. (2017) Rate decline curves analysis of multiple-fractured horizontal wells in heterogeneous reservoirs, J. Hydrol. 553, 527–539. [CrossRef] [Google Scholar]
  • Biryukov D., Kuchuk F.J. (2012) Transient pressure behavior of reservoirs with discrete conductive faults and fractures, Transport Porous Med. 95, 1, 239–268. [CrossRef] [Google Scholar]
  • Ren F., Ma G.W., Fan L.F., Wang Y., Zhu H. (2017) Equivalent discrete fracture networks for modeling fluid flow in highly fractured rock mass, Eng. Geol. 229, 21–30. [Google Scholar]
  • Wang X. (2006) Fundamental mechanics of fluid flow in porous media, Petroleum Industry Press, Beijing, China. [Google Scholar]
  • Karimi-Fard M., Durlofsky L.J. (2016) A general gridding, discretization, and coarsening methodology for modeling flow in porous formations with discrete geological features, Adv. Water Resour. 96, 354–372. [Google Scholar]
  • Luo W., Tang C. (2015) A semianalytical solution of a vertical fractured well with varying conductivity under non-Darcy-flow condition, SPE J. 20, 5, 1028–1040. [CrossRef] [Google Scholar]
  • Xu W., Wang X., Xing G., Wang J. (2017) Pressure-transient analysis for a vertically fractured well at an arbitrary azimuth in a rectangular anisotropic reservoir, J. Petrol. Sci. Eng. 159, 279–294. [CrossRef] [Google Scholar]
  • Wu S., Xing G., Cui Y., Wang B., Shi M., Wang M. (2019) A semi-analytical model for pressure transient analysis of hydraulic reorientation fracture in an anisotropic reservoir, J. Petrol. Sci. Eng. 179, 228–243. [CrossRef] [Google Scholar]
  • Wang X., Zhang Y., Liu C. (2004) Productivity evaluation and conductivity optimization for vertically fractured wells, Petrol. Explor. Dev. 31, 6, 78–81. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.