- Bardi M., Payri R., Malbec L.M., Bruneau G., Pickett L., Manin J., Bazyn T., Genzale C. (2012) Engine combustion network: Comparison of spray development, vaporization, and combustion in different combustion vessels, At. Sprays 22, 10, 807–842. [CrossRef] [Google Scholar]
- Engine Combustion Network (2020). [Online]. Available from: https://ecn.sandia.gov. [Google Scholar]
- Bermúdez V., García J.M., Juliá E., Martínez S. (2003) Engine with optically accessible cylinder head: A research tool for injection and combustion processes, SAE International, Detroit. [Google Scholar]
- Frijters P.J.M., Baert R.S.G., de Boer W., Somers B., Luijten C.C.M. (2009) Design and operation of a high pressure, high temperature cell for HD diesel spray diagnostics: Guidelines and results, in SAE Tech. Pap., pp. 2009–01–0649. [Google Scholar]
- Malbec L.M., Egúsquiza J., Bruneaux G., Meijer M. (2013) Characterization of a set of ECN spray A injectors: Nozzle to nozzle variations and effect on spray characteristics, SAE Int. J. Engines 6, 3, 1642–1660. [Google Scholar]
- Meijer M., Somer B., Johnson J., Naber J., Lee S.Y., Malbec L.M., Bruneaux G., Pickett L., Bardi M., Payri R., Bazyn T. (2012) Engine Combustion Network (ECN): Characterization and comparison of boundary conditions for different combustion vessels, At. Sprays 22, 9, 777–806. [CrossRef] [Google Scholar]
- Pickett L., Genzale C., Bruneaux G., Malbec L.M., Hermant L., Christiansen C., Schramm J. (2010) Comparison of diesel spray combustion in different high-temperature, high-pressure facilities, SAE Int. J. Engines 3, 2, 156–181. [Google Scholar]
- Verhoeven D., Vanhemelryck J.L., Baritaud T. (1998) Macroscopic and ignition characteristics of high-pressure sprays of single-component fuels, SAE Trans. 107, 1654–1668. [Google Scholar]
- Nesbitt J.E., Johnson S.E., Pickett L.M., Siebers D.L., Lee S.Y., Naber J.D. (2011) Minor species production from lean premixed combustion and their impact on autoignition of diesel surrogates, Energy Fuels 25, 3, 926–936. [Google Scholar]
- Pei Y., Davis M.J., Pickett L.M., Som S. (2015) Engine Combustion Network (ECN): Global sensitivity analysis of spray A for different combustion vessels, Combust. Flame 162, 6, 2337–2347. [Google Scholar]
- Teini P.D., Karwat D.M.A., Atreya A. (2012) The effect of CO2/H2O on the formation of soot particles in the homogeneous environment of a rapid compression facility, Combust. Flame 159, 3, 1090–1099. [Google Scholar]
- Bardi M., Bruneaux G., Malbec L.-M. (2016) Study of ECN injectors’ behavior repeatability with focus on aging effect and soot fluctuations, in: SAE Technical Papers, pp. 2016–01–0845. [CrossRef] [Google Scholar]
- Payri R., García-Oliver J.M., Bardi M., Manin J. (2012) Fuel temperature influence on diesel sprays in inert and reacting conditions, Appl. Therm. Eng. 35, 1, 185–195. [Google Scholar]
- Johnson S., Nesbitt J., Lee S., Naber J.D. (2009) Premixed combustion for acetylene-hydrogen fuel mixtures used in a constant volume combustion vessel for thermodynamic state generation, J. KONES Powertrain Transp. 16, 2, 199–208. [Google Scholar]
- Crua C. (2002) Combustion processes in a diesel engine, PhD Thesis, Brigthon University, Brighton, 205 p. [Google Scholar]
- Kennaird D.A., Crua C., Lacoste J., Heikal M.R., Gold M.R., Jackson N.S. (2002) In-cylinder penetration and break-up of diesel sprays using a common-rail injection system, in SAE Technical Papers, pp. 2002–01–1626. [CrossRef] [Google Scholar]
- Pastor J., Garcia-Oliver J.M., Garcia A., Zhong W., Micó C., Xuan T. (2017) An experimental study on diesel spray injection into a non-quiescent chamber, SAE Int. J. Fuels Lubr. 10, 2, 364–406. [Google Scholar]
- Genzale C. (2020) Spray A liquid length measurements. [Online]. Available from: https://ecn.sandia.gov/workshop/ECN1/LiquidLength.pdf. [Google Scholar]
- Westlye F.R., Penney K., Ivarsson A., Pickett L.M., Manin J., Skeen S.A. (2017) Diffuse back-illumination setup for high temporally resolved extinction imaging, Appl. Opt. 56, 17, 5028. [CrossRef] [PubMed] [Google Scholar]
- Bazyn T. (2020) Evaporating and combusting vapor penetration session. [Online]. Available from: https://ecn.sandia.gov/workshop/ECN1/VaporPenetration.pdf. [Google Scholar]
- Pickett L.M. (2020) Evaporating and combusting vapor penetration session. [Online]. Available from: https://ecn.sandia.gov/workshop/ECN1/CombustionSessionAbstract.pdf. [Google Scholar]
- Payri R., García-Oliver J.M., Xuan T., Bardi M. (2015) A study on diesel spray tip penetration and radial expansion under reacting conditions, Appl. Therm. Eng. 90, 619–629. [Google Scholar]
- Payri R., Salvador F.J., Manin J., Viera A. (2016) Diesel ignition delay and lift-off length through different methodologies using a multi-hole injector, Appl. Energy 162, 541–550. [Google Scholar]
- Ibrahim C., Arjouche H., Nilaphai O., Dozias S., Moreau B., Hespel C., Foucher F., Mounaïm-Rousselle C., Pouvesle J.M., Robert E. (2017) X-ray diagnostics of dodecane jet in spray A conditions using the new one shot engine (NOSE), in Ilass Europe. 28th European Conference on Liquid Atomization and Spray Systems, Valencia, 06–08 September. [Google Scholar]
- Nilaphai O., Hespel C., Chanchaona S., Mounaïm-Rousselle C. (2018) Spray and combustion characterizations of ABE/Dodecane blend in comparison to alcohol/Dodecane blends at high-pressure and high-temperature conditions, Fuel 225, 542–553. [CrossRef] [Google Scholar]
- Ajrouche H., Nilaphai O., Hespel C., Foucher F. (2019) Impact of nitric oxide on n-heptane and n-dodecane autoignition in a new high-pressure and high-temperature chamber, Proc. Combust. Inst. 37, 3, 3319–3326. [Google Scholar]
- Strozzi C., Sotton J., Mura A., Bellenoue M. (2008) Experimental and numerical study of the influence of temperature heterogeneities on self-ignition process of methane-air mixtures in a rapid compression machine, Combust. Sci. Technol. 180, 10–11, 1829–1857. [Google Scholar]
- Strozzi C., Mura A., Sotton J., Bellenoue M. (Nov. 2012) Experimental analysis of propagation regimes during the autoignition of a fully premixed methane–air mixture in the presence of temperature inhomogeneities, Combust. Flame 159, 11, 3323–3341. [Google Scholar]
- Ben Houidi M., Hespel C., Bardi M., Nilaphai O., Malbec L.M., Sotton J., Bellenoue M., Strozzi C., Ajrouche H., Foucher F., Moreau B., Rousselle C., Bruneaux G. (2020) Characterization of the ECN spray A in different facilities. Part 1: boundary conditions characterization, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 75, 35. [CrossRef] [Google Scholar]
- Ben Houidi M., Sotton J., Bellenoue M. (2016) Interpretation of auto-ignition delays from RCM in the presence of temperature heterogeneities: Impact on combustion regimes and negative temperature coefficient behavior, Fuel 186, 476–495. [CrossRef] [Google Scholar]
- Patel C., Hespel C., Nguyen T.L., Foucher F., Mounaïm-Rousselle C. (2020) Effect of exhaust gas recirculation composition on soot in ECN Spray A conditions, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 75, 34. [CrossRef] [Google Scholar]
- Settles G., Covert E. (2002) Schlieren and Shadowgraph techniques: Visualizing phenomena in transport media, Appl. Mech. Rev. 55, 4, B76. [Google Scholar]
- Pickett L.M. (2007,) Visualization of diesel spray penetration, cool-flame, ignition, high-temperature combustion, and soot formation using highspeed imaging, in West. States Sect. Inst. Fall Meet. 2007, Vol. 2, pp. 867–879. [Google Scholar]
- Pastor J.V., Payri R., Garcia-Oliver J.M., Briceño F.J. (2013) Schlieren methodology for the analysis of transient diesel flame evolution, SAE Int. J. Engines 6, 3, 1661–1676. [Google Scholar]
- Jung Y., Manin J., Skeen S., Pickett L.M. (2015) Measurement of liquid and vapor penetration of diesel sprays with a variation in spreading angle, in SAE Technical Papers, pp. 2015–01–0946. [CrossRef] [Google Scholar]
- S. N. Laboratories. (2020) Schlieren code. [Online]. Available from: https://ecn.sandia.gov/schlieren-code/. [Google Scholar]
- Pickett L.M., Manin J., Genzale C.L., Siebers D.L., Musculus M.P.B., Idicheria C.A. (Apr. 2011) Relationship between diesel fuel spray vapor penetration/dispersion and local fuel mixture fraction, SAE Int. J. Engines 4, 1, 764–799. [Google Scholar]
- Siebers D.L., Higgins B. (2001) Flame lift-off on direct-injection diesel sprays under quiescent conditions, SAE Trans. 110, 400–421. [Google Scholar]
- Donkerbroek A.J., Boot M.D., Luijten C.C.M., Dam N.J., der Meulen J.J. (2011) Flame lift-off length and soot production of oxygenated fuels in relation with ignition delay in a DI heavy-duty diesel engine, Combust. Flame 158, 3, 525–538. [Google Scholar]
- Naber J.D., Siebers D.L. (1996) Effects of gas density and vaporization on penetration and dispersion of diesel sprays, SAE Trans. 105, 82–111. [Google Scholar]
- Siebers D.L. (1999) Scaling liquid-phase fuel penetration in diesel sprays based on mixing-limited vaporization, SAE Trans. 108, 703–728. [Google Scholar]
- Siebers D.L. (1998) Liquid-phase fuel penetration in diesel sprays, SAE Trans. 107, 1205–1227. [Google Scholar]
- NIST. (2020) Chemistry webbook. [Online]. Available: https://webbook.nist.gov/cgi/cbook.cgi?Name=DODECANE&Units=SI. [Google Scholar]
- S. N. Laboratories. (2020) Diesel data search page. [Online]. Available from: https://ecn.sandia.gov/ecn-data-search/?nam=1. [Google Scholar]
- Benajes J., Payri R., Bardi M., Martí-Aldaraví P. (2013) Experimental characterization of diesel ignition and lift-off length using a single-hole ECN injector, Appl. Therm. Eng. 58, 1–2, 554–563. [Google Scholar]
- Pei Y., Hawkes E.R., Kook S., Goldin G.M., Lu T. (2015) Modelling n-dodecane spray and combustion with the transported probability density function method, Combust. Flame 162, 5, 2006–2019. [Google Scholar]
Open Access
Numéro |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Engine Combustion Network – France
|
|
---|---|---|
Numéro d'article | 78 | |
Nombre de pages | 13 | |
DOI | https://doi.org/10.2516/ogst/2020070 | |
Publié en ligne | 29 octobre 2020 |
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.