Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Numéro d'article 55
Nombre de pages 10
DOI https://doi.org/10.2516/ogst/2020055
Publié en ligne 1 septembre 2020
  • Albonico P., Bartosek M., Malandrino A., Bryant S., Lockhart T.P. (1995) Studies on phenol-formaldehyde crosslinked polymer gels in bulk and in porous media, Society of Petroleum Engineers, San Antonio, Texas. doi: 10.2118/28983-MS. [Google Scholar]
  • Al-Muntasheri G.A., Nasr-El-Din H.A., Al-Noaimi K., Zitha P.L.J. (2009) A study of polyacrylamide-based gels crosslinked with polyethyleneimine, SPE J. 14, 2, 245–251. doi: 10.2118/105925-PA. [CrossRef] [Google Scholar]
  • Banerjee R., Patil K., Khilar K. (2006) Studies on phenol-formaldehyde gel formation at a high temperature and at different pH, Can. J. Chem. Eng. 84, 3, 328–337. doi: 10.1002/cjce.5450840309. [Google Scholar]
  • Bryant S.L., Bartosek M., Lockhart T. (1997) Laboratory evaluation of phenol-formaldehyde/polymer gelants for high-temperature applications, J. Petrol. Sci. Eng. 17, 3–4, 197–209. doi: 10.1016/S0920-4105(96)00079-4. [CrossRef] [Google Scholar]
  • Bryant S.L., Borghi G.P., Bartosek M. (1998) Experimental investigation on the injectivity of phenol-formaldehyde/polymer gels, SPE J. 3, 4, 373–381. doi: 10.2118/52980-PA. [CrossRef] [Google Scholar]
  • Camilleri D., Engelson S., Lake L.W., Lin E.C., Ohnos T., Pope G., Sepehrnoori K. (1987) Description of an improved compositional micellar/polymer simulator, SPE Reserv. Eng. 2, 4, 427–432. doi: 10.2118/13967-PA. [CrossRef] [Google Scholar]
  • Chauveteau G., Tabary R., Renard M., Omari A. (1999) Controlling in-situ gelation of polyacrylamides by zirconium for water shutoff, Society of Petroleum Engineers, Houston, Texas. doi: 10.2118/50752-MS. [Google Scholar]
  • de Aguiar K.L.N.P., de Oliveira P.F., Mansur C.R.E. (2020) A comprehensive review of in situ polymer hydrogels for conformance control of oil reservoirs, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 75, 8. doi: 10.2516/ogst/2019067. [CrossRef] [Google Scholar]
  • Delshad M., Kim D.H., Magbagbeola O.A., Huh C., Pope G.A., Tarahhom F. (2008) Mechanistic interpretation and utilization of viscoelastic behavior of polymer solutions for improved polymer-flood efficiency, Society of Petroleum Engineers, Tulsa, Oklahoma. doi: 10.2118/113620-MS. [Google Scholar]
  • El-karsani K.S.M., Al-Muntasheri G.A., Hussein I.A. (2013) Polymer systems for water shutoff and profile modification: a review over the last decade, SPE J. 19, 1, 135–149. doi: 10.2118/163100-PA. [CrossRef] [Google Scholar]
  • Fabbri C., de-Loubens R., Skauge A., Hamon G., Bourgeois M. (2020) Effect of initial water flooding on the performance of polymer flooding for heavy oil production, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 75, 19. doi: 10.2516/ogst/2020008. [CrossRef] [Google Scholar]
  • He H., Wang Y., Zhang J., Xu X., Zhu Y., Bai S. (2015) Comparison of Gelation Behavior and Morphology of Resorcinol-Hexamethylenetetramine-HPAM Gel in Bulk and Porous Media, Transp. Porous Med. 109, 377–392. doi: 10.1007/s11242-015-0524-7. [CrossRef] [Google Scholar]
  • Herbas J., Moreno R., Romero M.F., Coombe D., Serna A. (2004) Gel performance simulations and laboratory/field studies to design water conformance treatments in eastern Venezuelan HPHT reservoirs, Society of Petroleum Engineers, Tulsa, Oklahoma. doi: 10.2118/89398-MS. [Google Scholar]
  • Hirasaki G.J., Pope G.A. (1974) Analysis of factors influencing mobility and adsorption in the flow of polymer solution through porous media, SPE J. 14, 4, 337–347. doi: 10.2118/4026-PA. [Google Scholar]
  • Huang C.G., Green D.W., Willhite P.G. (1986) An experimental study of the in-situ gelation of chromium (+3)/polyacrylamide polymer in porous media, SPE Reserv. Eng. 1, 6, 583–592. doi: 10.2118/12638-PA. [CrossRef] [Google Scholar]
  • James P., Harry F., Joe B., Steve C., Jim M., Chang K., Dennis W., James G. (2003) Field application of a new in-depth waterflood conformance improvement tool, Society of Petroleum Engineers, Kuala Lumpur, Malaysia. doi: 10.2118/84897-MS. [Google Scholar]
  • Marty L., Green D., Willhite G. (1991) The effect of flow rate on the in-situ gelation of a chrome/redox/polyacrylamide system, SPE Reserv. Eng. 6, 2, 219–224. doi: 10.2118/18504-PA. [CrossRef] [Google Scholar]
  • McCool C., Green D., Willhite G. (1991) Permeability reduction mechanisms involved in in-situ gelation of a polyacrylamide/chromium (VI)/thiourea system, SPE Reserv. Eng. 6, 1, 77–83. doi: 10.2118/17333-PA. [CrossRef] [Google Scholar]
  • McCool C., Li X., Wilhite G. (2009) Flow of a polyacrylamide/chromium acetate system in a long conduit, SPE J. 14, 1, 54–66. doi: 10.2118/106059-PA. [CrossRef] [Google Scholar]
  • Mercado M., Acuna J.C., Vasquez J.E., Caballero C., Soriano J.E. (2009) Successful field application of a high-temperature conformance polymer in Mexico, Society of Petroleum Engineers, Scheveningen, The Netherlands. doi: 10.2118/120966-MS. [Google Scholar]
  • Mokhtari M., Ozbayoglu M.E. (2010) Laboratory investigation on gelation behavior of xanthan crosslinked with borate intended to combat lost circulation, Society of Petroleum Engineers, Tunis, Tunisia. doi: 10.2118/136094-MS. [Google Scholar]
  • Ojukwu K.I., Al-Sharji H.H., Stevenson E., Al-Kitany N.A., Edwards C. (2007) Strategic deployment of chemical systems in petroleum development Oman, Society of Petroleum Engineers, Scheveningen, Netherlands. doi: 10.2118/107328-MS. [Google Scholar]
  • Qin Y., Cheng L., Zhang M., Liu Y., Liao R. (2017) Dynamic thickening investigation of the gelation process of PAM/PEI system at high temperature and high pressure, J. Disper. Sci. Technol. 38, 11, 1640–1646. doi: 10.1080/01932691.2016.1269652. [CrossRef] [Google Scholar]
  • Savins J. (1969) Non-Newtonian flow through porous media, Ind. Eng. Chem. Res. 61, 10, 18–47. doi: 10.1021/ie50718a005. [Google Scholar]
  • Seright R.S., Martin F.D. (1993) Impact of gelation pH, rock permeability, and lithology on the performance of a monomer-based gel, SPE Reserv. Eng. 8, 1, 43–50. doi: 10.2118/20999-PA. [CrossRef] [Google Scholar]
  • Tessarolli F.G.C., Queirós Y.G.C., Elias Mansur C.R. (2014) Evaluation of pH-Sensitive hydrogels to control the permeability anisotropy of oil reservoirs, J. Appl. Polym. Sci. 131, 17, 40665–40676. doi: 10.1002/app.40665. [Google Scholar]
  • Todd B.J., Willhite G.P., Green D.W. (1991) Radial modeling of in-situ gelation in porous media, Society of Petroleum Engineers, Oklahoma City, Oklahoma. doi: 10.2118/21650-MS. [Google Scholar]
  • Vasquez J., Dalrymple E.D., Eoff L., Reddy B.R., Civan F. (2005) Development and evaluation of high-temperature conformance polymer systems, Society of Petroleum Engineers, The Woodlands, Texas. doi: 10.2118/93156-MS. [Google Scholar]
  • Wang L., Chen Z., Wang C., Elsworth D., Liu W. (2019) Reassessment of coal permeability evolution using steady-state flow methods: The role of flow regime transition, Int. J. Coal. Geol. 211, 103210. doi: 10.1016/j.coal.2019.103210. [Google Scholar]
  • Yu H., Wang Y., Zhang J., Lv P., Shi S. (2015) Dynamic Gelation of HPAM/Cr(III) under Shear in an Agitator and Porous Media, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 70, 6, 941–949. doi: 10.2516/ogst/2012090. [CrossRef] [Google Scholar]
  • Zhou W., Xin C., Chen S., Yu Q., Wang K. (2020) Polymer-enhanced foam flooding for improving heavy oil recovery in thin reservoirs, Energy Fuel 34, 4, 4116–4128. doi: 10.1021/acs.energyfuels.9b04298. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.