Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Numéro d'article 54
Nombre de pages 11
DOI https://doi.org/10.2516/ogst/2020050
Publié en ligne 31 août 2020
  • Saad Y. (2000) Iterative methods for sparse linear systems, 2nd edn, SIAM. [Google Scholar]
  • D’ambra P., Filippone S., Vassilevski P.S. (2018) Bootcmatch: A software package for bootstrap amg based on graph weighted matching, ACM Trans. Math. Softw. 44, 39:1–39:25. doi: 10.1145/3190647. [Google Scholar]
  • Xu W., Zikatanov L.T. (2018) Adaptive aggregation on graphs, J. Comput. Appl. Math. 340, 718–730. doi: 10.1016/j.cam.2017.10.032. [Google Scholar]
  • Hu X., Lin J., Zikatanov L.T. (2019) An adaptive multigrid method based on path cover, SIAM J. Sci. Comput. 410, 5, S220–S241. doi: 10.1137/18M1194493. [Google Scholar]
  • Eymard R., Gallouët T., Herbin R. (2000) Finite volume methods, Handbook Numer. Anal. 7, 713–1018. [Google Scholar]
  • Anciaux-Sedrakian A., Grigori L., Jorti Z., Papež J., Yousef S. (2020) Adaptive solution of linear systems of equations based on a posteriori error estimators, Numer. Algorithms 84, 331–364. doi: 10.1007/s11075-019-00757-z. [Google Scholar]
  • Vohralík M. (2008) Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods, Numer. Math. 1110, 1, 121–158. [Google Scholar]
  • Ern A., Vohralík M. (2013) Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs, SIAM J. Sci. Comput. 350, 4, A1761–A1791. doi: 10.1137/120896918. [Google Scholar]
  • Erath C., Praetorius D. (2016) Adaptive vertex-centered finite volume methods with convergence rates, SIAM J. Numer. Anal. 540, 4, 2228–2255. [Google Scholar]
  • Zhang F. (2006) The Schur complement and its applications, Vol. 4, Springer Science & Business Media. [Google Scholar]
  • Trefethen L.N., Bau D. (1997) Numerical linear algebra, Vol. 50, SIAM. [CrossRef] [Google Scholar]
  • Dolean V., Jolivet P., Nataf F. (2015) An introduction to domain decomposition methods: Algorithms, theory, and parallel implementation, SIAM. [CrossRef] [Google Scholar]
  • Li R., Xi Y., Saad Y. (2016) Schur complement-based domain decomposition preconditioners with low-rank corrections, Numer. Linear Algebr. Appl. 230, 4, 706–729. [CrossRef] [Google Scholar]
  • Saad Y., Sosonkina M. (1999) Distributed schur complement techniques for general sparse linear systems, SIAM J. Sci. Comput. 210, 4, 1337–1356. doi: 10.1137/S1064827597328996. [Google Scholar]
  • Chan T.F., Mathew T.P. (1994) Domain decomposition algorithms, in: Acta Numerica 1994, Cambridge University Press, pp. 61–143. [Google Scholar]
  • Li Z., Saad Y., Sosonkina M. (2003) parms: a parallel version of the algebraic recursive multilevel solver, Numer. Linear Algebr. Appl. 100, 5–6, 485–509. doi: 10.1002/nla.325. [CrossRef] [Google Scholar]
  • Mallik G., Vohralík M., Yousef S. (2020) Goal-oriented a posteriori error estimation for conforming and nonconforming approximations with inexact solvers, J. Comput. Appl. Math. 366, 112367. doi: 10.1016/j.cam.2019.112367. [Google Scholar]
  • Christie M.A., Blunt M.J. (2001) Tenth SPE comparative solution project : A comparison of upscaling techniques, SPE Reserv. Evalu. Eng. 40, 4, 308–317. doi: 10.2118/66599-MS. [CrossRef] [Google Scholar]
  • Chen Z., Huan G., Ma Y. (2006) Computational methods for multiphase flows in porous media (Computational Science and Engineering 2), Society for Industrial and Applied Mathematics, Philadelphia, PA, USA. [CrossRef] [Google Scholar]
  • Anciaux-Sedrakian A., Eaton J., Gratien J.-M., Guignon T., Havé P., Preux C., Ricois O. (2015) Will GPGPUs be finally a credible solution for industrial reservoir simulators? in: SPE Reservoir Simulation Symposium, Vol. 1, Society of Petroleum Engineers. doi: 10.2118/173223-MS. [Google Scholar]
  • Anciaux-Sedrakian A., Gottschling P., Gratien J.-M., Guignon T. (2014) Survey on efficient linear solvers for porous media flow models on recent hardware architectures, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 69, 4, 753–766. doi: 10.2516/ogst/2013184. [CrossRef] [Google Scholar]
  • Guennebaud G., Jacob B., et al. (2010) Eigen v3. http://eigen.tuxfamily.org. [Google Scholar]
  • Balay S., Abhyankar S., Adams M., Brown J., Brune P., Buschelman K., Dalcin L.D., Eijkhout V., Gropp W., Kaushik D., Knepley M., May D., McInnes L., Curfman L., Munson T., Rupp K., Sanan P., Smith B., Zampini S., Zhang H., Zhang H. (2017) Petsc users manual revision 3.8, Technical Report, Argonne National Lab. (ANL), Argonne, IL (United States). [Google Scholar]
  • Gratien J.-M., Guignon T., Magras J.-F., Quandalle P., Ricois O. (2006) How to improve the scalability of an industrial parallel reservoir simulator, in: Proceedings of the IASTED International Conference on Parallel and Distributed Computing and Systems, pp. 114–121. [Google Scholar]
  • Hackbusch W. (1999) A sparse matrix arithmetic based on Formula -matrices. Part i: Introduction to Formula -matrices, Computing 620, 2, 89–108. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.