Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Article Number 55
Number of page(s) 10
DOI https://doi.org/10.2516/ogst/2020055
Published online 01 September 2020
  • Albonico P., Bartosek M., Malandrino A., Bryant S., Lockhart T.P. (1995) Studies on phenol-formaldehyde crosslinked polymer gels in bulk and in porous media, Society of Petroleum Engineers, San Antonio, Texas. doi: 10.2118/28983-MS. [Google Scholar]
  • Al-Muntasheri G.A., Nasr-El-Din H.A., Al-Noaimi K., Zitha P.L.J. (2009) A study of polyacrylamide-based gels crosslinked with polyethyleneimine, SPE J. 14, 2, 245–251. doi: 10.2118/105925-PA. [Google Scholar]
  • Banerjee R., Patil K., Khilar K. (2006) Studies on phenol-formaldehyde gel formation at a high temperature and at different pH, Can. J. Chem. Eng. 84, 3, 328–337. doi: 10.1002/cjce.5450840309. [Google Scholar]
  • Bryant S.L., Bartosek M., Lockhart T. (1997) Laboratory evaluation of phenol-formaldehyde/polymer gelants for high-temperature applications, J. Petrol. Sci. Eng. 17, 3–4, 197–209. doi: 10.1016/S0920-4105(96)00079-4. [Google Scholar]
  • Bryant S.L., Borghi G.P., Bartosek M. (1998) Experimental investigation on the injectivity of phenol-formaldehyde/polymer gels, SPE J. 3, 4, 373–381. doi: 10.2118/52980-PA. [Google Scholar]
  • Camilleri D., Engelson S., Lake L.W., Lin E.C., Ohnos T., Pope G., Sepehrnoori K. (1987) Description of an improved compositional micellar/polymer simulator, SPE Reserv. Eng. 2, 4, 427–432. doi: 10.2118/13967-PA. [Google Scholar]
  • Chauveteau G., Tabary R., Renard M., Omari A. (1999) Controlling in-situ gelation of polyacrylamides by zirconium for water shutoff, Society of Petroleum Engineers, Houston, Texas. doi: 10.2118/50752-MS. [Google Scholar]
  • de Aguiar K.L.N.P., de Oliveira P.F., Mansur C.R.E. (2020) A comprehensive review of in situ polymer hydrogels for conformance control of oil reservoirs, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 75, 8. doi: 10.2516/ogst/2019067. [Google Scholar]
  • Delshad M., Kim D.H., Magbagbeola O.A., Huh C., Pope G.A., Tarahhom F. (2008) Mechanistic interpretation and utilization of viscoelastic behavior of polymer solutions for improved polymer-flood efficiency, Society of Petroleum Engineers, Tulsa, Oklahoma. doi: 10.2118/113620-MS. [Google Scholar]
  • El-karsani K.S.M., Al-Muntasheri G.A., Hussein I.A. (2013) Polymer systems for water shutoff and profile modification: a review over the last decade, SPE J. 19, 1, 135–149. doi: 10.2118/163100-PA. [Google Scholar]
  • Fabbri C., de-Loubens R., Skauge A., Hamon G., Bourgeois M. (2020) Effect of initial water flooding on the performance of polymer flooding for heavy oil production, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 75, 19. doi: 10.2516/ogst/2020008. [Google Scholar]
  • He H., Wang Y., Zhang J., Xu X., Zhu Y., Bai S. (2015) Comparison of Gelation Behavior and Morphology of Resorcinol-Hexamethylenetetramine-HPAM Gel in Bulk and Porous Media, Transp. Porous Med. 109, 377–392. doi: 10.1007/s11242-015-0524-7. [Google Scholar]
  • Herbas J., Moreno R., Romero M.F., Coombe D., Serna A. (2004) Gel performance simulations and laboratory/field studies to design water conformance treatments in eastern Venezuelan HPHT reservoirs, Society of Petroleum Engineers, Tulsa, Oklahoma. doi: 10.2118/89398-MS. [Google Scholar]
  • Hirasaki G.J., Pope G.A. (1974) Analysis of factors influencing mobility and adsorption in the flow of polymer solution through porous media, SPE J. 14, 4, 337–347. doi: 10.2118/4026-PA. [Google Scholar]
  • Huang C.G., Green D.W., Willhite P.G. (1986) An experimental study of the in-situ gelation of chromium (+3)/polyacrylamide polymer in porous media, SPE Reserv. Eng. 1, 6, 583–592. doi: 10.2118/12638-PA. [Google Scholar]
  • James P., Harry F., Joe B., Steve C., Jim M., Chang K., Dennis W., James G. (2003) Field application of a new in-depth waterflood conformance improvement tool, Society of Petroleum Engineers, Kuala Lumpur, Malaysia. doi: 10.2118/84897-MS. [Google Scholar]
  • Marty L., Green D., Willhite G. (1991) The effect of flow rate on the in-situ gelation of a chrome/redox/polyacrylamide system, SPE Reserv. Eng. 6, 2, 219–224. doi: 10.2118/18504-PA. [Google Scholar]
  • McCool C., Green D., Willhite G. (1991) Permeability reduction mechanisms involved in in-situ gelation of a polyacrylamide/chromium (VI)/thiourea system, SPE Reserv. Eng. 6, 1, 77–83. doi: 10.2118/17333-PA. [Google Scholar]
  • McCool C., Li X., Wilhite G. (2009) Flow of a polyacrylamide/chromium acetate system in a long conduit, SPE J. 14, 1, 54–66. doi: 10.2118/106059-PA. [Google Scholar]
  • Mercado M., Acuna J.C., Vasquez J.E., Caballero C., Soriano J.E. (2009) Successful field application of a high-temperature conformance polymer in Mexico, Society of Petroleum Engineers, Scheveningen, The Netherlands. doi: 10.2118/120966-MS. [Google Scholar]
  • Mokhtari M., Ozbayoglu M.E. (2010) Laboratory investigation on gelation behavior of xanthan crosslinked with borate intended to combat lost circulation, Society of Petroleum Engineers, Tunis, Tunisia. doi: 10.2118/136094-MS. [Google Scholar]
  • Ojukwu K.I., Al-Sharji H.H., Stevenson E., Al-Kitany N.A., Edwards C. (2007) Strategic deployment of chemical systems in petroleum development Oman, Society of Petroleum Engineers, Scheveningen, Netherlands. doi: 10.2118/107328-MS. [Google Scholar]
  • Qin Y., Cheng L., Zhang M., Liu Y., Liao R. (2017) Dynamic thickening investigation of the gelation process of PAM/PEI system at high temperature and high pressure, J. Disper. Sci. Technol. 38, 11, 1640–1646. doi: 10.1080/01932691.2016.1269652. [Google Scholar]
  • Savins J. (1969) Non-Newtonian flow through porous media, Ind. Eng. Chem. Res. 61, 10, 18–47. doi: 10.1021/ie50718a005. [Google Scholar]
  • Seright R.S., Martin F.D. (1993) Impact of gelation pH, rock permeability, and lithology on the performance of a monomer-based gel, SPE Reserv. Eng. 8, 1, 43–50. doi: 10.2118/20999-PA. [Google Scholar]
  • Tessarolli F.G.C., Queirós Y.G.C., Elias Mansur C.R. (2014) Evaluation of pH-Sensitive hydrogels to control the permeability anisotropy of oil reservoirs, J. Appl. Polym. Sci. 131, 17, 40665–40676. doi: 10.1002/app.40665. [Google Scholar]
  • Todd B.J., Willhite G.P., Green D.W. (1991) Radial modeling of in-situ gelation in porous media, Society of Petroleum Engineers, Oklahoma City, Oklahoma. doi: 10.2118/21650-MS. [Google Scholar]
  • Vasquez J., Dalrymple E.D., Eoff L., Reddy B.R., Civan F. (2005) Development and evaluation of high-temperature conformance polymer systems, Society of Petroleum Engineers, The Woodlands, Texas. doi: 10.2118/93156-MS. [Google Scholar]
  • Wang L., Chen Z., Wang C., Elsworth D., Liu W. (2019) Reassessment of coal permeability evolution using steady-state flow methods: The role of flow regime transition, Int. J. Coal. Geol. 211, 103210. doi: 10.1016/j.coal.2019.103210. [Google Scholar]
  • Yu H., Wang Y., Zhang J., Lv P., Shi S. (2015) Dynamic Gelation of HPAM/Cr(III) under Shear in an Agitator and Porous Media, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 70, 6, 941–949. doi: 10.2516/ogst/2012090. [Google Scholar]
  • Zhou W., Xin C., Chen S., Yu Q., Wang K. (2020) Polymer-enhanced foam flooding for improving heavy oil recovery in thin reservoirs, Energy Fuel 34, 4, 4116–4128. doi: 10.1021/acs.energyfuels.9b04298. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.