Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Article Number 54
Number of page(s) 11
DOI https://doi.org/10.2516/ogst/2020050
Published online 31 August 2020
  • Saad Y. (2000) Iterative methods for sparse linear systems, 2nd edn, SIAM. [Google Scholar]
  • D’ambra P., Filippone S., Vassilevski P.S. (2018) Bootcmatch: A software package for bootstrap amg based on graph weighted matching, ACM Trans. Math. Softw. 44, 39:1–39:25. doi: 10.1145/3190647. [Google Scholar]
  • Xu W., Zikatanov L.T. (2018) Adaptive aggregation on graphs, J. Comput. Appl. Math. 340, 718–730. doi: 10.1016/j.cam.2017.10.032. [Google Scholar]
  • Hu X., Lin J., Zikatanov L.T. (2019) An adaptive multigrid method based on path cover, SIAM J. Sci. Comput. 410, 5, S220–S241. doi: 10.1137/18M1194493. [Google Scholar]
  • Eymard R., Gallouët T., Herbin R. (2000) Finite volume methods, Handbook Numer. Anal. 7, 713–1018. [Google Scholar]
  • Anciaux-Sedrakian A., Grigori L., Jorti Z., Papež J., Yousef S. (2020) Adaptive solution of linear systems of equations based on a posteriori error estimators, Numer. Algorithms 84, 331–364. doi: 10.1007/s11075-019-00757-z. [Google Scholar]
  • Vohralík M. (2008) Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods, Numer. Math. 1110, 1, 121–158. [Google Scholar]
  • Ern A., Vohralík M. (2013) Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs, SIAM J. Sci. Comput. 350, 4, A1761–A1791. doi: 10.1137/120896918. [Google Scholar]
  • Erath C., Praetorius D. (2016) Adaptive vertex-centered finite volume methods with convergence rates, SIAM J. Numer. Anal. 540, 4, 2228–2255. [Google Scholar]
  • Zhang F. (2006) The Schur complement and its applications, Vol. 4, Springer Science & Business Media. [Google Scholar]
  • Trefethen L.N., Bau D. (1997) Numerical linear algebra, Vol. 50, SIAM. [Google Scholar]
  • Dolean V., Jolivet P., Nataf F. (2015) An introduction to domain decomposition methods: Algorithms, theory, and parallel implementation, SIAM. [Google Scholar]
  • Li R., Xi Y., Saad Y. (2016) Schur complement-based domain decomposition preconditioners with low-rank corrections, Numer. Linear Algebr. Appl. 230, 4, 706–729. [Google Scholar]
  • Saad Y., Sosonkina M. (1999) Distributed schur complement techniques for general sparse linear systems, SIAM J. Sci. Comput. 210, 4, 1337–1356. doi: 10.1137/S1064827597328996. [Google Scholar]
  • Chan T.F., Mathew T.P. (1994) Domain decomposition algorithms, in: Acta Numerica 1994, Cambridge University Press, pp. 61–143. [Google Scholar]
  • Li Z., Saad Y., Sosonkina M. (2003) parms: a parallel version of the algebraic recursive multilevel solver, Numer. Linear Algebr. Appl. 100, 5–6, 485–509. doi: 10.1002/nla.325. [Google Scholar]
  • Mallik G., Vohralík M., Yousef S. (2020) Goal-oriented a posteriori error estimation for conforming and nonconforming approximations with inexact solvers, J. Comput. Appl. Math. 366, 112367. doi: 10.1016/j.cam.2019.112367. [Google Scholar]
  • Christie M.A., Blunt M.J. (2001) Tenth SPE comparative solution project : A comparison of upscaling techniques, SPE Reserv. Evalu. Eng. 40, 4, 308–317. doi: 10.2118/66599-MS. [Google Scholar]
  • Chen Z., Huan G., Ma Y. (2006) Computational methods for multiphase flows in porous media (Computational Science and Engineering 2), Society for Industrial and Applied Mathematics, Philadelphia, PA, USA. [Google Scholar]
  • Anciaux-Sedrakian A., Eaton J., Gratien J.-M., Guignon T., Havé P., Preux C., Ricois O. (2015) Will GPGPUs be finally a credible solution for industrial reservoir simulators? in: SPE Reservoir Simulation Symposium, Vol. 1, Society of Petroleum Engineers. doi: 10.2118/173223-MS. [Google Scholar]
  • Anciaux-Sedrakian A., Gottschling P., Gratien J.-M., Guignon T. (2014) Survey on efficient linear solvers for porous media flow models on recent hardware architectures, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 69, 4, 753–766. doi: 10.2516/ogst/2013184. [Google Scholar]
  • Guennebaud G., Jacob B., et al. (2010) Eigen v3. http://eigen.tuxfamily.org. [Google Scholar]
  • Balay S., Abhyankar S., Adams M., Brown J., Brune P., Buschelman K., Dalcin L.D., Eijkhout V., Gropp W., Kaushik D., Knepley M., May D., McInnes L., Curfman L., Munson T., Rupp K., Sanan P., Smith B., Zampini S., Zhang H., Zhang H. (2017) Petsc users manual revision 3.8, Technical Report, Argonne National Lab. (ANL), Argonne, IL (United States). [Google Scholar]
  • Gratien J.-M., Guignon T., Magras J.-F., Quandalle P., Ricois O. (2006) How to improve the scalability of an industrial parallel reservoir simulator, in: Proceedings of the IASTED International Conference on Parallel and Distributed Computing and Systems, pp. 114–121. [Google Scholar]
  • Hackbusch W. (1999) A sparse matrix arithmetic based on Formula -matrices. Part i: Introduction to Formula -matrices, Computing 620, 2, 89–108. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.