Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Numéro d'article 10
Nombre de pages 11
Publié en ligne 24 février 2020
  • Parkinson G. Wind and solar become new base load power for South Australia, Clean Energy News and Analysis. , 2016. [Google Scholar]
  • Tsatsaronis G., Pisa J. (1994) Exergo-economic evaluation and optimization of energy systems – application to the CGAM problem, Energy 19, 3, 287–321. [CrossRef] [Google Scholar]
  • Moran M.J., Sciubba E. (1994) Exergy analysis: Principles and practice, J. Eng. Gas Turbines Power 116, 2, 285–290. [CrossRef] [Google Scholar]
  • Bejan A., Moran M.J. (1996) Thermal design and optimization, John Wiley & Sons, NJ, USA. [Google Scholar]
  • Rosen M.A. (2004) Exergy analysis of energy systems, in: Cleveland C.J. (ed), Encyclopedia of energy, Vol. 2, Elsevier, Amsterdam; Boston, pp. 607–621. [CrossRef] [Google Scholar]
  • Woudstra N., Woudstra T., Pirone A., van der Stelt T. (2010) Thermodynamic evaluation of combined cycle plants, Energy Convers. Manage. 51, 5, 1099–1110. [CrossRef] [Google Scholar]
  • Moran M.J., Shapiro H.N., Boettner D.D., Bailey M.B. (2010) Fundamentals of engineering thermodynamics, John Wiley & Sons, Hoboken, NJ, USA. [Google Scholar]
  • Dincer I., Rosen M.A. (2012) Exergy: Energy, environment and sustainable development, Elsevier, Amsterdam, The Netherlands. [Google Scholar]
  • Gilbert A., Mesmer B., Watson M.D. (2016) Uses of exergy in systems engineering, in: Proceedings of the 2016 Conference on Systems Engineering Research, Mar 22–24, Huntsville, AL. [Google Scholar]
  • Kotas T.J. (1985) The exergy method of thermal plant analysis, Butterworth-Heinemann, Oxford, UK. [Google Scholar]
  • Chin W.W., El-Masri M.A. (1986) Exergy analysis of combined cycles – part 2: Analysis and optimization of two-pressure steam bottoming cycles, in: Presented at the Jt. ASME/IEEE Power Generation Conference, October 19–23, Portland, OR. Paper no. 86-JPGC-GT-10. [Google Scholar]
  • Kaushik S.C., Siva Reddy V., Tyagi S.K. (2011) Energy and exergy analyses of thermal power plants: A review, Renew. Sust. Energ. Rev. 15, 4, 1857–1872. [CrossRef] [Google Scholar]
  • Regulagadda P., Dincer I., Naterer G.F. (2010) Exergy analysis of a thermal power plant with measured boiler and turbine losses, Appl. Therm. Eng. 30, 8–9, 970–976. [Google Scholar]
  • Hou D., Shao S., Zhang Y., Liu S.L., Chen Y., Zhang S.S. (2012) Exergy analysis of a thermal power plant using a modeling approach, Clean Technol. Environ. Policy 14, 5, 805–813. [Google Scholar]
  • Horlock J.H., Young J.B., Manfrida G. (2000) Exergy analysis of modern fossil-fuel power plant, ASME J. Eng. Gas Turbines Power 122, 1–7. [CrossRef] [Google Scholar]
  • Marija Ž., Galovi A., Virag Z. (2014) Detailed analysis of the effect of the turbine and compressor efficiency on thermal and exergy efficiency of a Brayton cycle, Therm. Sci. 18, 3, 843–852. [CrossRef] [Google Scholar]
  • Pattanayak L. (2015) Thermodynamic modeling and exergy analysis of gas turbine cycle for different boundary conditions, Int. J. Power Electron. Drive Syst. 6, 2, 205–215. [Google Scholar]
  • Marija Ž., Galovic A., Avsec J., Holik M. (2016) Exergy analysis of a Brayton cycle with variable physical properties and variable composition of working substance, Tehnički Vjesnik 23, 3, 801–808. [Google Scholar]
  • Betelmal E.H., Farhat S.A. (2018) Energy and exergy analysis of a simple gas turbine cycle with wet compression, Mech. Eng. Res. 8, 1, 30–40. [CrossRef] [Google Scholar]
  • Kousuke N., Shinich K. (2005) Regenerative steam-injection gas-turbine systems, Appl. Energy 81, 3, 231–246. [Google Scholar]
  • Naserian M.M., Farahat S., Sarhaddi F. (2017) New exergy analysis of a regenerative closed Brayton cycle, Energy Convers. Manage. 134, 116–124. [CrossRef] [Google Scholar]
  • Khan M.N., Tlili I. (2019) New approach for enhancing the performance of gas turbine cycle: A comparative study, Results Eng. 2, 100008, 1–10. [Google Scholar]
  • El-Masr M.A. (1987) Exergy analysis of combined cycles: Part 1 air-cooled brayton-cycle gas turbines, J. Eng. Gas Turbines Power 109, 2, 228–236. [CrossRef] [Google Scholar]
  • Facchini B., Fiaschi D., Manfrida G. (2000) Exergy analysis of combined cycles using latest generation gas turbines, J. Eng. Gas Turbines Power 122, 233–238. [CrossRef] [Google Scholar]
  • Shin J.Y., Jeon Y.J., Maeng D.J., Kim J.S., Ro S.T. (2002) Analysis of the dynamic characteristics of a combined-cycle power plant, Energy 27, 12, 1085–1098. [CrossRef] [Google Scholar]
  • Deng-Chern S., Chia-Chin C. (2004) Engineering and exergy analyses for combustion gas turbine based power generation system, Energy 29, 8, 1183–1205. [CrossRef] [Google Scholar]
  • Polyzakis A.L., Koroneos C., Xydis G. (2008) Optimum gas turbine cycle for combined cycle power plant, Energy Convers. Manage. 49, 4, 551–563. [CrossRef] [Google Scholar]
  • Petrakopoulou F., Tsatsaronis G., Morosuk T., Carassai A. (2012) Conventional and advanced exergetic analyses applied to a combined cycle power plant, Energy 41, 146–152. [CrossRef] [Google Scholar]
  • Metha N., Mehta N.S., Panchal C.P. (2014) Exergy analysis of gas turbine power plant, Int. J. Sci. Eng. Res. 5, 2, 712–716. [Google Scholar]
  • Mishra R.S., Singh A. (2017) Thermodynamic (Energy-Exergy) analysis of combined cycle gas turbine power plant (CCGT) for improving its thermal performances, Int. J. Res. Eng. Innov. 1, 4, 9–24. [Google Scholar]
  • Feidt M., Costea M. (2012) Energy and exergy analysis and optimization of combined heat and power systems – comparison of various systems, Energies 5, 3701–3722. [Google Scholar]
  • Dincer I., Rosen M.A. (2007) Energy analysis of cogeneration and district energy systems, in: Exergy – energy, environment and sustainable development, Chap. 12, Elsevier, Amsterdam, The Netherlands, pp. 257–276. [Google Scholar]
  • Kaviri A.G., Jafar M.N.M., Tholudin M.L., Avval H.B. (2011) Exergy analysis of a cogeneration heat and power (CHP) system (first and second law analysis), in: 2011 IEEE Conference on Clean Energy and Technology (CET), 27–29 June, Kuala Lumpur, Malaysia. [Google Scholar]
  • Balli O., Aras H., Hepbasli A. (2008) Exergo-economic analysis of a combined heat and power (CHP) system, Int. J. Energy Res. 32, 273–289. [CrossRef] [Google Scholar]
  • Walsh P.P., Fletcher P. (2004) Gas turbine performance, 2nd edn., Blackwell Science, Hoboken, NJ. [CrossRef] [Google Scholar]
  • Soares C. (2015) Gas turbines: A handbook of air, land and sea applications, Elsevier, Amsterdam, The Netherlands. [Google Scholar]
  • EPRI Report No 1025357. (2012) F-class gas turbine technology summary: Design features, reliability statistics, and durability issues, Palo Alto, CA. [Google Scholar]
  • Gas Turbine Power Plants, Electropaedia. [Google Scholar]
  • Prade B. (2013) Gas turbine operation and combustion performance issues, in: Modern gas turbine systems, high efficiency, low emission, fuel flexible power generation, Chap. 10, Woodhead Publishing Series in Energy, Oxford, pp. 383–422. [Google Scholar]
  • Brandt D.E., Wesorick R.R. (1994) Gas turbine design philosophy, GE Industrial & Power Systems, Schenectady, NY. GER-3434D. [Google Scholar]
  • Frangopoulos C.A. (ed) (2009) Exergy, energy system analysis and optimization – Volume I, EOLSS Pub, Oxford, UK. [Google Scholar]
  • Langston L.S. Gas turbine compressors: Understanding stall, surge, Combined Cycle J. 50,, 2017. [Google Scholar]
  • Saravanamuttoo H., Cohen H., Rogers G.F.C. (2013) Gas turbine theory, 5th edn., Pearson, London, UK. [Google Scholar]
  • Dixon S.L., Hall C.A. (2014) Fluid mechanics and thermodynamics of turbomachinery, 7th edn., Butterworth-Heinemann/Elsevier, Oxford, UK. [Google Scholar]
  • Marty J., Castillon L., Boniface J.-C., Burguburu S., Godard A. (2013) Numerical and experimental investigations of flow control in axial compressors, Aerosp. Lab J. 6, 1–13. [Google Scholar]
  • Bunker R.S. (2008) Innovative gas turbine cooling techniques, WIT Trans. State Art Sci. Eng., 42, 199–229. WIT Press [CrossRef] [Google Scholar]
  • Han J.C., Dutta S., Ekkad S. (2000) Gas turbine heat transfer and cooling technology, Taylor & Francis, Abingdon, UK. [Google Scholar]
  • Carnevale E.A., Facchini B., Ferrara G. (1998) A rotor blade cooling improvement for heavy duty gas turbine using steam and mixed steam/air cooling, in: International Gas Turbine and Aeroengine Congress and Exposition, June 2–5, Stockholm, TX. Paper 98-GT-275. [Google Scholar]
  • Clarke D.R., Oechsner M., Padture N. (2012) Thermal-barrier coatings for more efficient gas-turbine engines, MRS Bull. 37, 891–898. [Google Scholar]
  • Gell M., Wang J., Kumar R., Roth J., Jiang C., Jordan E.H. (2018) Higher temperature thermal barrier coatings with the combined use of yttrium aluminum garnet and the solution precursor plasma spray process, J. Therm. Spray Technol. 27, 4, 543–555. [CrossRef] [Google Scholar]
  • Heinrich J.G., Aldinger F. (ed) (2001) Ceramic materials and components for engines, Wiley VCH, Weinheim, Germany. [CrossRef] [Google Scholar]
  • Bright E., Burleson R., Dynan S.A., Collins W.T. (1995) NT1 64 silicon nitride gas turbine engine turbine blade manufacturing development, in: International Gas Turbine and Aeroengine Congress and Exposition, June 5–8, Houston, TX. Paper 95-GT-74. [Google Scholar]
  • Shunkichi U., Tatsuki O., Hua-Tay L. (2007) Recession behavior of a silicon nitride with multi-layered environmental barrier coating system, Ceram. Int. 33, 5, 859–862. [Google Scholar]
  • Schenk B., Strangman T., Opila E.J., Robinson R.C., Fox D.S., Klemm H., Taut C., More K.L., Torterelli P. (2001) Oxidation behavior of prospective silicon nitride materials for advanced microturbine applications, in: Proceedings of the 46th ASME Turbo Expo Land, Sea, and Air, June 4–7, NO, USA. Paper 2001-GT-0459. [Google Scholar]
  • Hai-Doo K., Hua-Tay L., Hoffmann M.J. (2005) Advanced Si-based ceramics and composites, Key Eng. Mater. 287, 10–15. [Google Scholar]
  • Davis L.B. (1996) Dry low NOx combustion systems for GE heavy duty gas turbines, in: International Gas Turbine and Aeroengine Congress & Exhibition, June 10–13, Birmingham, UK. Paper 96GT27. [Google Scholar]
  • Bender W.R. Lean pre-mixed combustion, Gas turbine handbook, NETL, Pittsburgh, PA., 2019. [Google Scholar]
  • Klosinski J.P., Ekanayake S., Blanton J.C., Scipio A.I. Inlet bleed heat control system, US Patent No 20170167496A1, 2018. [Google Scholar]
  • Boyce M.P. (2002) Gas turbine engineering handbook, Chap. 7, Gulf Professional Publishing, Boston. [Google Scholar]
  • Roberts R., Eastbourn S.M. (2014) Modeling techniques for a computational efficient dynamic turbofan engine model, Int. J. Aerosp. Eng. 2014, 11, Article ID 283479, Hindawi Pub Corp. [CrossRef] [Google Scholar]
  • Westfall C. (2015) Understanding compressor maps – sizing a turbocharger. [Google Scholar]
  • Razak A.M.Y. (2007) Industrial gas turbines: Performance and operability, Woodhead Publishing Ltd, Cambridge, UK. [Google Scholar]
  • Schuhler T., Riche M., Orhon D., Zoughaib A., Busco A., Moliere M. (2018) Performances of gas turbines in O&G applications: Simple thermodynamics methods help predict major trends, in: Proceedings of the ASME Turbine Technical Conference and Exposition 2018 Turbo Expo 2018, June 11–15, Lillestrom (Oslo), Norway. Paper GT2018-75046. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.