Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Numéro d'article 11
Nombre de pages 13
Publié en ligne 6 mars 2020
  • Bryzik W., Kamo R. (1983) TACOM/Cummins Adiabatic Engine Program, SAE Technical Paper 830314. doi: 10.4271/830314. [Google Scholar]
  • Assanis D., Mathur T. (1990) The effect of thin ceramic coatings on spark-ignition engine performance, SAE Technical Paper 900903. doi: 10.4271/900903. [Google Scholar]
  • Binder C., Abou Nada F., Richter M., Cronhjort A., Norling D. (2017) Heat loss analysis of a steel piston and a YSZ coated piston in a heavy-duty diesel engine using phosphor thermometry measurements, SAE Int. J. Engines 10, 4, 1954–1968. doi: 10.4271/2017-01-1046. [Google Scholar]
  • Uchida N. and Osada H. (2017) A new piston insulation concept for heavy-duty diesel engines to reduce heat loss from the wall. SAE Int. J. Engines 10, 5, 2565–2574. doi: 10.4271/2017-24-0161. [Google Scholar]
  • Uchihara K., Ishii M., Nakajima H., Wakisaka Y. (2018) A study on reducing cooling loss in a partially insulated piston for diesel engine, SAE Technical Paper 2018-01-1276. doi: 10.4271/2018-01-1276. [Google Scholar]
  • Fujimoto H., Yamamoto H., Fujimoto M., Yamashita H. (2011) A Study on Improvement of Indicated Thermal Efficiency of ICE Using High Compression Ratio and Reduction of Cooling Loss, SAE Technical Paper 2011-01-1872. doi: 10.4271/2011-01-1872. [Google Scholar]
  • Caputo S., Millo F., Cifali G., Pesce F. (2017) Numerical investigation on the effects of different thermal insulation strategies for a passenger car diesel engine, SAE Int. J. Engines 10, 4, 2154–2165. doi: 10.4271/2017-24-0021. [Google Scholar]
  • Kaudewitz T., Lange F., Rablbauer R., Mork A., Schüttenhelm M., Frambourg M., Lösche-ter Horst T., Pitsch H. (2018) Innovative piston technologies for future efficiency and emission targets, in: 27th Aachen Colloquium Automobile and Engine Technology, October 8–10, 2018, Aachen, Germany. [Google Scholar]
  • THESTA (2016) Innovatives Thermomanagement für Stahlkolben, Final Report. doi: 10.2314/GBV:870173170. [Google Scholar]
  • Schaedler T., Andruskiewicz P. (2018) Temperature-following thermal barrier coatings for high-efficiency enginesx, DOE Vehicle Technologies Annual Merit Review. [Google Scholar]
  • Toyota Central R&D Labs., Inc. (2017) Challenges of internal combustion engines for achieving low-carbon society (full special issue), R&D Review of Toyota CRDL 48, 4., ISSN 2186-9014. [Google Scholar]
  • Yamashita H., Kawaguchi A., Iguma H., Tanaka K., Ogawa T., Yamashita C., Fukui K., Wakisaka Y. (2018) Heat insulation by temperature swing in combustion chamber walls (fifth report), JSAE 20184159 (in Japanese). [Google Scholar]
  • Bouteiller B., Allimant A., Zaccardi J.-M., Chérel J. (2019) New ceramic thermal barrier coatings development in a spark-ignition engine – experimental investigation, in: International Thermal Spray Conference and Exposition, May 26–29, 2019, Yokohama, Japan. [Google Scholar]
  • Kashdan J., Bruneaux G. (2011) Laser-induced phosphorescence measurements of combustion chamber surface temperature on a single-cylinder diesel engine, SAE Technical Paper 2011-01-2049. doi: 10.4271/2011-01-2049. [Google Scholar]
  • Fukui K., Wakisaka Y., Nishikawa K., Hattori Y., Kosaka H., Kawaguchi A. (2016) Development of instantaneous temperature measurement technique for combustion chamber surface and verification of temperature swing, SAE Technical Paper 2016-01-0675. doi: 10.4271/2016-01-0675. [Google Scholar]
  • Knappe C., Andersson P., Algotsson M., Richter M., Linden J., Alden M., Tuner M., Johansson B. (2011) Laser-induced phosphorescence and the impact of phosphor coating thickness on crank-angle resolved cylinder wall temperatures, SAE Technical Paper 2011-01-1292. doi: 10.4271/2011-01-1292. [Google Scholar]
  • Köpple F., Seboldt D., Jochmann P., Hettinger A., Kufferath A., Bargende M. (2014) Experimental investigation of fuel impingement and spray-cooling on the piston of a GDI engine via instantaneous surface temperature measurements, SAE Technical Paper 2014-01-1447. doi: 10.4271/2014-01-1447. [Google Scholar]
  • Ishibashi A., Nakamura M., Muramatsu H. (2014) Piston temperature measurement in internal combustion with telemetric method, SAE Technical Paper 2014-32-0051. doi: 10.4271/2014-32-0051. [Google Scholar]
  • Broatch A., Olmeda P., Margot X., Gomez-Soriano J. (2019) Numerical simulations for evaluating the impact of advanced insulation coatings on H2 additivated gasoline lean combustion in a turbocharged spark-ignited engine, Appl. Therm. Eng. 148, 674–683. doi: 10.1016/j.applthermaleng.2018.11.106. [Google Scholar]
  • Kosaka H., Zentgraf F., Scholtissek A., Bischoff L., Häber T., Suntz R., Albert B., Hasse C., Dreizler A. (2018) Wall heat fluxes and CO formation/oxidation during laminar and turbulent side-wall quenching of methane and DME flames, Int. J. Heat Fluid Flow 70, 181–192. doi: 10.1016/j.ijheatfluidflow.2018.01.009. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.