- Abry R.G.F., Dupart R.S. (1995) Amine plant troubleshooting and optimization, Hydro. Proc. 4, 41–50. [Google Scholar]
- Aguila-Hernandez J., Trejo A., Garcia-Flores B.E. (2007) Surface tension and foam behaviour of aqueous solutions of blends of three alkanolamines, as a function of temperature, Coll. Surf. A: Phy. Eng. Asp. 308, 33–46. [CrossRef] [Google Scholar]
- AkzoNobel (May 2008) AkzoNobel surface chemistry in the oil industry, https://www.akzonobel.com [Google Scholar]
- Al Dhafeeri M.A. (2007) Identifying sources key to detailed troubleshooting of amine foaming, Oil Gas J. 105, 1–12. [Google Scholar]
- Alhseinat E., Amr M., Jumah R., Banat F. (2015a) Removal of MDEA foam creators using foam fractionation: Parametric study coupled with foam characterization, J. Nat. Gas Sci. Eng. 26, 502–509. [Google Scholar]
- Alhseinat E., Pal P., Ganesan A., Banat F. (2015b) Effect of MDEA degradation products on foaming behavior and physical properties of aqueous MDEA solutions, Int. J. Green. Gas Con. 37, 280–286. [CrossRef] [Google Scholar]
- Alhseinat E., Pal P., Keewan M., Banat F. (2014) Foaming study combined with physical characterization of aqueous MDEA gas sweetening solutions, J. Nat. Gas Sci. Eng. 17, 49–57. [Google Scholar]
- Arnold K., Stewart M. (1995) Surface production operations: Design of gas-handling systems and facilities, Gulf Publishing Co, Houston, USA. [Google Scholar]
- Chen X., Freeman S.A., Rochelle G. (2011) Foaming of aqueous piperazine and monoethanolamine for CO2 capture, Int. J. Green. Gas Con. 5, 381–386. [CrossRef] [Google Scholar]
- Drenckhan W., Saint-Jalmes A. (2015) The science of foaming, Adv. Coll. Inter. Sci. 222, 228–259. [CrossRef] [PubMed] [Google Scholar]
- Dupart M.S., Bacon T.R., Edwards D.J. (1993) Understanding corrosion in alkanolamine gas treating plants, Hydro. Proc. 93, 75–80. [Google Scholar]
- El-Haddad M.N. (2013) Chitosan as a green inhibitor for copper corrosion in acidic medium, Inter. J. Bio. Macro. 55, 142–149. [CrossRef] [Google Scholar]
- Keewan M., Banat F., Alhseinat E., Zain J., Pal P. (2018a) Effect of operating parameters and corrosion inhibitors on foaming behavior of aqueous methyldiethanolamine solutions, J. Pet. Sci. Eng. 165, 358–364. [Google Scholar]
- Keewan M., Banat F., Alhseinat E., Pal P. (2018b) Prediction of foaming and surface tension of lean MDEA solutions with corrosion inhibitor (bis(2-hydroxyethyl)cocoalkylamine) in continuous foam fractionation column, Chem. Eng. Comm. 205, 871–880, https://doi.org/10.1080/00986445.2017.1423063. [CrossRef] [Google Scholar]
- Kohl A.L., Nielsen R.B. (1997) Gas purification, Gulf Professional Publishing, Houston, USA. [Google Scholar]
- Kulkarni A.A., Joshi J.B. (2005) Bubble formation and bubble rise velocity in gas-liquid systems: A Review, Ind. Eng. Chem. Res. 44, 5873–5931. [Google Scholar]
- Mokhatab S., Poe W.A. (2012) Handbook of natural gas transmission and processing, Elsevier, USA. [Google Scholar]
- Olajire A.A. (2017) Corrosion inhibition of offshore oil and gas production facilities using organic compound inhibitors – A review, J. Mol. Liq. 248, 775–808. [Google Scholar]
- Pal P., Banat F. (2016) Comparison of thermal degradation between fresh and industrial aqueous methyldiethanolamine with continuous injection of H2S/CO2 in high pressure reactor, J. Nat. Gas Sci. Eng. 29, 479–487. [Google Scholar]
- Papavinasam S., Doiron A., Panneerselvam T., Revie R.W. (2007) Effect of hydrocarbons on the internal corrosion of oil and gas pipelines, Corrosion 63, 704–712. [CrossRef] [Google Scholar]
- Pilon L., Fedorov A.G., Viskanta R. (2002) Analysis of transient thickness of pneumatic foams, Chem. Eng. Sci. 57, 977–990. [Google Scholar]
- Srinivasan S., Veawab A., Aroonwilas A. (2013) Low toxic corrosion inhibitors for amine-based CO2 capture process, Energy Proc. 37, 890–895. [CrossRef] [Google Scholar]
- Thitakamol B., Veawab A. (2008) Foaming behavior in CO2 absorption process using aqueous solutions of single and blended alkanolamines, Ind. Eng. Chem. Res. 47, 216–225. [Google Scholar]
- Thitakamol B., Veawab A., Aroonwilas A. (2009) Foaming in amine-based CO2 capture process: experiment, modeling and simulation, Energy Proc. 1, 1381–1386. [CrossRef] [Google Scholar]
- Thitakamol B., Veawab A. (2009) Foaming model for CO2 absorption process using aqueous monoethanolamine solutions, Coll. Surf. A: Phy. Eng. Asp. 349, 125–136. [CrossRef] [Google Scholar]
- Tse K.L., Martin T., McFarlane C.M., Nienow A.W. (2003) Small bubble formation via a coalescence dependent break-up mechanism, Chem. Eng. Sci. 58, 275–286. [Google Scholar]
- Tse K.L., Martin T.M., McFarlane C.M., Nienow A.W. (1998) Visualisation of bubble coalescence in a coalescence cell a stirred tank and a bubble column, Chem. Eng. Sci. 53, 4031–4036. [Google Scholar]
- Yaro A.S., Khadom A.A., Wael R.K. (2013) Apricot juice as green corrosion inhibitor of mild steel in phosphoric acid, Alex. Eng. J. 52, 129–135. [CrossRef] [Google Scholar]
Open Access
Numéro |
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
|
|
---|---|---|
Numéro d'article | 76 | |
Nombre de pages | 7 | |
DOI | https://doi.org/10.2516/ogst/2018073 | |
Publié en ligne | 11 décembre 2018 |
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.