Dynamics of sedimentary basins and underlying lithosphere at plate boundaries: The Eastern Mediterranean
Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Dynamics of sedimentary basins and underlying lithosphere at plate boundaries: The Eastern Mediterranean
Numéro d'article 77
Nombre de pages 27
DOI https://doi.org/10.2516/ogst/2018085
Publié en ligne 12 décembre 2018
  • Alves T.M. (2015) Submarine slide blocks and associated soft-sediment deformation in deep-water basins: A review, Mar. Pet. Geol. 67, 262–285. https://doi.org/10.1016/j.marpetgeo.2015.05.010. [Google Scholar]
  • Arfai J., Lutz R., Franke D., Gaedicke C., Kley J. (2016) Mass-transport deposits and reservoir quality of Upper Cretaceous Chalk within the German Central Graben, North Sea, Int. J. Earth Sci. 105, 3, 797–818. https://doi.org/10.1007/s00531-015-1194-y. [Google Scholar]
  • Bailey W.R., Holdsworth R.E., Swarbrick R.E. (2000) Kinematic history of a reactivated oceanic suture: The Mamonia Complex Suture Zone, SW Cyprus, J. Geol. Soc. 157, 1107–1126. https://doi.org/10.1144/jgs.157.6.1107. [CrossRef] [Google Scholar]
  • Blanpied C. (2017) Tertiary reefal carbonate in Cyprus: Absolute ages obtained by using strontium isotope stratigraphy (SIS) help refine the tectonostratigraphic calendar of the island, AAPG Europe Region Conference – Hydrocarbons in the Mediterranean: Revisiting Mature Plays and Understanding New and Emerging Ideas, 18–19 January, Lanarca, Cyprus. [Google Scholar]
  • BouDagher-Fadel M., Lord A. (2006) Illusory stratigraphy decoded by Oligocene-Miocene autochthonous and allochthonous foraminifera in the Terra Member, Pakhna Formation (Cyprus), Esuclacuk 3, 3, 217–228. [Google Scholar]
  • Bowman S.A. (2011) Regional seismic interpretation of the hydrocarbon prospectivity of offshore Syria, GeoArabia 16, 3, 95–124. [Google Scholar]
  • Calon T.J., Aksu A.E., Hall J. (2005a) The Neogene evolution of the Outer Latakia Basin and its extension into the Eastern Mesaoria Basin (Cyprus), Eastern Mediterranean, Mar. Geol. 221, 1–4, 61–94. https://doi.org/10.1016/j.margeo.2005.03.013. [Google Scholar]
  • Calon T.J., Aksu A.E., Hall J. (2005b) The Oligocene-Recent evolution of the Mesaoria Basin (Cyprus) and its western marine extension, Eastern Mediterranean, Mar. Geol. 221, 1–4, 95–120. https://doi.org/10.1016/j.margeo.2005.03.012. [Google Scholar]
  • Chanvry E., Deschamps R., Joseph P., Puigde F.C., Poyatos-Mora M., Serra K., Garcia D., Teinturier S. (2018) The influence of intrabasinal tectonics in the stratigraphic evolution of piggyback basin fills: Towards a model from the Tremp-Graus-Ainsa Basin (South-Pyrenean Zone, Spain), Sediment. Geol. 377, 34–62. https://doi.org/10.1016/j.sedgeo.2018.09.007. [CrossRef] [Google Scholar]
  • Dargahi S., Arvin M., Pan Y., Babaei A. (2010) Petrogenesis of post-collisional A-type granitoids from the Urumieh-Dokhtar magmatic assemblage, Southwestern Kerman, Iran: Constraints on the Arabian-Eurasian continental collision, Lithos 115, 1–4, 190–204. https://doi.org/10.1016/j.lithos.2009.12.002. [Google Scholar]
  • Dercourt J.R., Zonenshain L.P., Ricou L.E., Kazmin V.G., Le Pichon X., Knipper A.L., Grandjacquet C., Sbortshikov I.M., Geyssant J., Lepvrier C., Pechersky D.H., Boulin J., Sibuet J.C., Savostin L.A., Sorokhtin O., Westphal M., Bazhenov M.L., Lauer J.P., Biju-Duval B. (1986) Geological evolution of the tethys belt from the atlantic to the pamirs since the LIAS, Tectonophysics 123, 1–4, 241–315. https://doi.org/10.1016/0040-1951(86)90199-X. [Google Scholar]
  • Dilek Y., Sandvol E. (2009) Seismic structure, crustal architecture and tectonic evolution of the Anatolian-African Plate Boundary and the Cenozoic Orogenic Belts in the Eastern Mediterranean Region, Geol. Soc. Lond. Spec. Publ. 327, 1, 127–160. https://doi.org/10.1144/SP327.8. [CrossRef] [Google Scholar]
  • Eaton S. (1987) The sedimentology of mid to late Miocene carbonates and evaporites and in southern Cyprus, PhD Thesis, University of Edinburgh. [Google Scholar]
  • Eaton S., Robertson A.H.F. (1993) The Miocene Pakhna Formation, southern Cyprus and its relationship to the Neogene tectonic evolution of the Eastern Mediterranean, Sediment. Geol. 86, 273–296. [CrossRef] [Google Scholar]
  • Farrell S.G., Eaton S. (1987) Slump strain in the Tertiary of Cyprus and the Spanish Pyrenees. Definition of palaeoslopes and models of soft-sediment deformation, Geol. Soc. Lond. Spec. Publ. 29, 1, 181–196. https://doi.org/10.1144/GSL.SP.1987.029.01.15. [CrossRef] [Google Scholar]
  • Fillon C., Huismans R.S., Van Der Beek P., Muñoz J.A. (2013) Syntectonic sedimentation controls on the evolution of the southern Pyrenean fold-and-thrust belt: Inferences from coupled tectonic-surface processes models, J. Geophys. Res.: Solid Earth 118, 10, 5665–5680. https://doi.org/10.1002/jgrb.50368. [CrossRef] [Google Scholar]
  • Follows E.J. (1992) Patterns of reef sedimentation and diagenesis in the Miocene of Cyprus, Sediment. Geol. 79, 1–4, 225–253. https://doi.org/10.1016/0037-0738(92)90013-H. [CrossRef] [Google Scholar]
  • Follows E.J. (1996) Tectonic controls miocene reefs related carbonate facies, SEPM Concepts of Sedimentology and Paleontology, pp. 295–315. [Google Scholar]
  • Garfunkel Z. (1998) Constraints on the origin and history of the Eastern Mediterranean basin, Tectonophysics 298, 1–3, 5–35. https://doi.org/10.1016/S0040-1951(98)00176-0. [Google Scholar]
  • Garfunkel Z. (2004) Origin of the Eastern Mediterranean basin: A reevaluation, Tectonophysics 391, 1–4, 11–34. [Google Scholar]
  • Glover C., Robertson A. (1998) Neotectonic intersection of the Aegean and Cyprus tectonic arcs: Extensional and strike-slip faulting in the Isparta Angle, SW Turkey, Tectonophysics 298, 1–3, 103–132. https://doi.org/10.1016/S0040-1951(98)00180-2. [Google Scholar]
  • Gorini C., Montadert L., Rabineau M. (2015) New imaging of the salinity crisis: Dual Messinian lowstand megasequences recorded in the deep basin of both the eastern and western Mediterranean, Mar. Pet. Geol. 66, 278–294. https://doi.org/10.1016/j.marpetgeo.2015.01.009. [Google Scholar]
  • Granot R. (2016) Palaeozoic oceanic crust preserved beneath the eastern Mediterranean, Nat. Geosci. 9, 701–705. https://doi.org/10.1038/ngeo2784. [Google Scholar]
  • Guan Z., Chen K., He M., Zhu J., Zhou F., Yu S. (2016) Recurrent mass transport deposits and their triggering mechanisms in the Kaiping Sag, Pearl River Mouth Basin, Mar. Pet. Geol. 73, 419–432. https://doi.org/10.1016/j.marpetgeo.2016.03.016. [Google Scholar]
  • Hall J, Aksu A.E., Calon T.J., Yasar D. (2005a) Varying tectonic control on basin development at an active microplate margin: Latakia basin, eastern Mediterranean, Mar. Geol. 221, 15–60. [Google Scholar]
  • Hall J., Calon T.J., Aksu A.E. Meade S.R. (2005b) Structural evolution of the Latakia Ridge and Cyprus basin at the front of the Cyprus Arc, Eastern Mediterranean sea, Mar. Geol. 221, 261–297. [Google Scholar]
  • Haq B.U., Hardenbol J., Vail P.R. (1988) Chronology of fluctuating sea levels since the Triassic, Science 235, 4793, 1156–1167. https://doi.org/10.1126/science.235.4793.1156. [Google Scholar]
  • Harrison R.W. (2008) A model for the plate tectonic evolution of the eastern mediterranean region that emphasizes the role of transform (strike-slip) structures, in: 1st WSEAS International Conference on Environmental and Geological Science and Engineering (EG’08), pp. 153–158. [Google Scholar]
  • Harrison R.W., Newell W., Batihanli H., Panayides I., McGeehin J.P., Mahan S., Ozur E., Tsiolakis E., Necdet M. (2004) Tectonic history northern Cyprus, J. Asian Earth Sci. 23, 191–210. [Google Scholar]
  • Hawie N., Gorini C., Deschamps R., Nader F.H., Montadert L., Granjeon D., Baudin F. (2013) Tectono-stratigraphic evolution of the northern Levant Basin (offshore Lebanon), Mar. Pet. Geol. 48, 392–410. https://doi.org/10.1016/j.marpetgeo.2013.08.004. [Google Scholar]
  • Jolivet R., Faccenna C. (2000) Mediterranean extension and the Africa-Eurasia collision, Tectonics 19, 6, 1095–1106. https://doi.org/10.1029/2000TC900018. [Google Scholar]
  • Kähler G. (1994) Stratigraphy and sedimentology of the Lefkara formation, Cyprus (Paleogene to Early Neogene), PhD Thesis, The University of Southampton. [Google Scholar]
  • Kähler G., Stow D.A. (1998) Turbidites and contourites of the Palaeogene Lefkara Formation, southern Cyprus, Sediment. Geol. 115, 1–4, 215–231. https://doi.org/10.1016/S0037-0738(97)00094-8. [CrossRef] [Google Scholar]
  • Kinnaird T.C., Robertson A.H.F. (2012) Tectonic and sedimentary response to subduction and incipient continental collision in southern Cyprus, easternmost Mediterranean region, Geol. Soc. Lond. Spec. Publ. 372, 1, 585–614. https://doi.org/10.1144/SP372.10. [CrossRef] [Google Scholar]
  • Kinnaird T.C. (2008) Tectonic and sedimentary response to oblique and incipient continental – continental collision the easternmost Mediterranean (Cyprus), The University of Edinburgh. Available at https://www.era.lib.ed.ac.uk/handle/1842/3486. [Google Scholar]
  • Lapierre H., Bosch D., Narros A., Mascle G.H., Tardy M., Demant A. (2007) The Mamonia Complex (SW Cyprus) revisited: Remnant of Late Triassic intra-oceanic volcanism along the Tethyan southwestern passive margin, Geol. Magazine 144, 1–19. https://doi.org/10.1017/S0016756806002937. [CrossRef] [Google Scholar]
  • Lee S.H., Stow D.A.V. (2007) Laterally contiguous, concave-up basal shear surfaces of submarine landslide deposits (Miocene), southern Cyprus: Differential movement of sub-blocks within a single submarine landslide lobe, Geosci. J. 11, 4, 315–321. [CrossRef] [Google Scholar]
  • Lord A., Harrison R.W., Boudagher-Fadel M.K., Stone B.D., Osman V. (2009) Miocene mass transport sediments, Troodos Massif, Cyprus, Proc. Geol. Assoc. 120, 133–138. [Google Scholar]
  • Malpas J., Calon T., Squires G. (1993) The development of a late Cretaceous microplate suture zone in SW Cyprus, Geol. Soc. Lond. Spec. Publ. 76, 1, 177–195. https://doi.org/10.1144/GSL.SP.1993.076.01.08. [CrossRef] [Google Scholar]
  • Malpas J., Xenophontos C., Williams D. (1992) The Ayia Varvara Formation of SW Cyprus: A product of complex collisional tectonics, Tectonophysics 212, 3–4, 193–211. https://doi.org/10.1016/0040-1951(92)90291-D. [Google Scholar]
  • Manzi V., Lugli S., Roveri M., F. Dela Pierre, Gennari R., Lozar F., Natalicchio M., Schreiber B.C., Taviani M., Turco E. (2016) The Messinian salinity crisis in Cyprus: A further step towards a new stratigraphic framework for Eastern Mediterranean Basin Res., 207–236. https://doi.org/10.1111/bre.12107. [CrossRef] [Google Scholar]
  • Martini E. (1971) Standard Tertiary and Quaternary calcareous nannoplankton zonation, in: Farinacci A. (ed), Proceedings 2nd International Conference Planktonic Microfossils, Vol. 2, Ed. Tecnosci., Roma, pp. 739–785. [Google Scholar]
  • McCallum J.E., Scrutton R.A., Robertson A.H.F., Ferrari W. (1993) Seismostratigraphy and Neogene-Recent depositional history of the south-central continental margin of Cyprus, Mar. Pet. Geol. 10, 5, 426–438. https://doi.org/10.1016/0264-8172(93)90045-T. [Google Scholar]
  • Monnet J. (2005) Final Report study of active tectonics in Cyprus for seismic risk mitigation WP8 33, 242. [Google Scholar]
  • Montadert L., Nicolaides S., Semb P.H., Lie O. (2014) Petroleum systems offshore Cyprus, in: Marlow L., Kendall C., Yose L. (eds.), Petroleum systems of the Tethyan region, 106, AAPG Memoir, pp. 301–334. [Google Scholar]
  • Morse J.T. (1996) Biostratigraphical constraints (calcareous nannofossils) on the Late Cretaceous to Late Miocene evolution of Cyprus, PhD Thesis, University of Durham. [Google Scholar]
  • Muñoz J.A., Beamud E., Fernández O., Arbués P., Dinarès-Turell J., Poblet J. (2013) The Ainsa Fold and thrust oblique zone of the central Pyrenees: Kinematics of a curved contractional system from paleomagnetic and structural data, Tectonics 32, 5, 1142–1175. https://doi.org/10.1002/tect.20070. [Google Scholar]
  • Orszag-Sperber F., Rouchy J.M., Elion P. (1989) The sedimentary expression of regional tectonic events during the Miocene-Pliocene Transition in the southern Cyprus basins, Geol. Magazine 126, 3, 291–299. https://doi.org/10.1017/S001675680002238X. [CrossRef] [Google Scholar]
  • Papadimitriou N., Gorini C., Nader F.H., Deschamps R., Symeou V., Lecomte J.C. (2018) Tectono-stratigraphic evolution of the western margin of the Levant Basin (offshore Cyprus), Mar. Pet. Geol. 91, 683–705. https://doi.org/10.1016/j.marpetgeo.2018.02.006. [Google Scholar]
  • Papazachos B.C., Papaioannou C.H.A. (1999) Lithospheric boundaries and plate motions in the Cyprus area, Tectonophysics 308, 193–204. [Google Scholar]
  • Payne A.S., Robertson A.H.F. (2000) Structural evolution and regional significance of the Polis graben system western Cyprus, in: Third International Conference on the Geology of the Eastern Mediterranean, pp. 45–59. [Google Scholar]
  • Payne A.S., Robertson A.H.F. (1995) Neogene supra-subduction zone extension in the west Cyprus Polis graben system, J. Geol. Soc. 152, 4, 613–628. https://doi.org/10.1144/gsjgs.152.4.0613. [CrossRef] [Google Scholar]
  • Poole A.J., Robertson A.H.F. (2000) Quaternary marine terrace and aeolianites in coastal south and west Cyprus: Implications for regional uplift and sea-level change, in: I. Panayides, C. Xenophontos, J. Malpas (eds), Proc. Third International Conference on the Geology of the Eastern Mediterranean, pp. 105–123. [Google Scholar]
  • Poole A.J., Robertson A.H.F (1998) Pleistocene fanglomerate deposition related to uplift of the Troodos Ophiolite, Cyprus, in: Robertson A.H.F, Emeis K.-C, Camerlenghi A. (eds), Proc. ODP, Sci. Results, 160, Ocean Drilling Program, College Station, TX, pp. 545–566 [Google Scholar]
  • Poole A.J., Robertson A.H.F. (1991) Quaternary uplift and sea-level change at an active plate boundary, Cyprus, J. Geol. Soc. 148, 909–921. https://doi.org/10.1144/gsjgs.148.5.0909. [CrossRef] [Google Scholar]
  • Reiche S., Hübscher C., Ehrhardt A. (2016) The impact of salt on the late Messinian to recent tectonostratigraphic evolution of the Cyprus subduction zone, Basin Res. 28, 5, 569–597. https://doi.org/10.1111/bre.12122. [CrossRef] [Google Scholar]
  • Robertson A.H.F. (1977) The origin and diagenesis of cherts from Cyprus, Sedimentology 24, 1, 11–30. https://doi.org/10.1111/j.1365-3091.1977.tb00117.x. [Google Scholar]
  • Robertson A.H.F. (1998a) Mesozoic-Tertiary tectonic evolution of the easternmost Mediterranean area: integration of marine and land evidence, in: A.H.F. Robertson, K.-C. Emeis, C. Richter, A. Camerlenghi (eds), Proc. ODP, Sci. Results, 160, Ocean Drilling Program, College Station, TX, pp. 723–782. https://doi.org/10.2973/odp.proc.sr.160.061.1998. [Google Scholar]
  • Robertson A.H.F. (1998b) Tectonic significance of the Eratosthenes Seamount: A continental fragment in the process of collision with a subduction zone in the eastern Mediterranean (Ocean Drilling Program Leg 160), Tectonophysics 298, 1–3, 63–82. https://doi.org/10.1016/S0040-1951(98)00178-4. [Google Scholar]
  • Robertson A.H.F., Fleet A.J. (1976) The origins of rare earth’s in metalliferous sediments of the Troodos Massif. Cyprus, Earth Planet. Sci. Lett. 28, 3, 385–394. https://doi.org/10.1016/0012-821X(76)90200-4. [Google Scholar]
  • Robertson A.H.F., Woodcock N. (1979) Mamonia complex, southwest Cyprus: Evolution and displacement of a Mesozoic continental margin, Geol. Soc. Am. Bull. 90, 651–665. [Google Scholar]
  • Robertson A.H.F., Woodcock N.H. (1986) The role of the Kyrenia Range Lineament, Cyprus, in the geological evolution of the eastern mediterranean area, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 317, 1539, 141–177. https://doi.org/10.1098/rsta.1986.0030. [CrossRef] [Google Scholar]
  • Robertson A.H.F., Xenophontos C. (1993) Development of concepts concerning the Troodos ophiolite and adjacent units in Cyprus, in: H.M. Prichard, T. Alabaster, T. Harris (eds),Magmatic Processes and Plate Tectonics, Geological Society of Special Publication, London, 70, 85–119. https://doi.org/10.1144/GSL.SP.1993.076.01.05. [Google Scholar]
  • Robertson A.H.F., Clift P.D., Degnan P.J., Jones G. (1991) Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys, Palaeogeogr. Palaeoclimatol. Palaeoecol. 87, 1–4, 289–343. https://doi.org/10.1016/0031-0182(91)90140-M. [Google Scholar]
  • Robertson A.H.F., Karamata S., Saric K. (2009) Overview of ophiolites and related units in the Late Palaeozoic-Early Cenozoic magmatic and tectonic development of Tethys in the northern part of the Balkan region, Lithos 108, 1–4, 1–36. https://doi.org/10.1016/j.lithos.2008.09.007. [Google Scholar]
  • Robertson A.H.F., Parlak O., Ustaomer T. (2012) Overview of the Palaeozoic-Neogene evolution of Neotethys in the Eastern Mediterranean region (southern Turkey, Cyprus, Syria), Pet. Geosci. 18, 4, 381–404. https://doi.org/10.1144/petgeo2011-091. [CrossRef] [Google Scholar]
  • Sage L., Letouzey J. (1990) Convergence of the African and Eurasian plate in the eastern mediterranean, in: Letouzey J. (ed), Petroleum and tectonics in mobile Belts, Editions Technip, Paris, pp. 49–68. [Google Scholar]
  • Sissingh W. (1977) Biostratigraphy of Cretaceous calcareous nannoplankton, Geol. Mijnbouw 56, 1, 37–65. [Google Scholar]
  • Sissingh W. (1978) Microfossil biostratigraphy and stage-stratotypes of the Cretaceous, Geol. Mijnbouw 57, 3, 433–440. [Google Scholar]
  • Stampfli G.M., Borel G.D. (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons, Earth Planet. Sci. Lett. 196, 1–2, 17–33. https://doi.org/10.1016/S0012-821X(01)00588-X. [Google Scholar]
  • Stow D.A.V., Lovell J.P.B. (1979) Contourites: Their recognitionin modem and ancient sediments, Earth Sci. Rev. 14, 251–291. [Google Scholar]
  • Stow D.A.V., Braakenburg N.E., Xenophontos C. (1995) The Pissouri Basin fan-delta complex, southwestern Cyprus, Sediment. Geol. 98, 1–4, 245–262. https://doi.org/10.1016/0037-0738(95)00035-7. [CrossRef] [Google Scholar]
  • Stow D.A.V., Kahler G., Reeder M. (2002) Fossil contourites: Type example from an Oligocene palaeoslope system, Cyprus, Geol. Soc. Lond. Mem. 22, 443–455. [CrossRef] [Google Scholar]
  • Swarbrick R.E., Naylor M.A. (1980) The Kathikas Melange, SW Cyprus; Late Cretaceous submarine debris flows, Sedimentology 27, 1, 63–78. [Google Scholar]
  • Symeou V., Homberg C., Nader F., Darnault R., Lecomte J.C., Papadimitriou N. (2017) Longitudinal and temporal evolution of the tectonic style along the Cyprus Arc system, assessed through 2-D reflection seismic interpretation: Tectonic style of the Cyprus Arc system, Tectonics 37, 30–47. https://doi.org/10.1002/2017TC004667. [Google Scholar]
  • Urquhart E., Banner F.T. (1994) Biostratigraphy of the supra-ophiolite sediments of the Troodos Massif, Cyprus: The Cretaceous Perapedhi, Kannaviou, Moni and Kathikas formations, Geol. Magazine 131, 4, 499–518. https://doi.org/10.1017/S0016756800012127. [CrossRef] [Google Scholar]
  • Welford K., Hall J., Huebscher C., Reiche S., Louden K. (2015) Crustal seismic velocity structure from Eratosthenes Seamount to Hecataeus Rise across the Cyprus Arc, eastern Mediterranean, Geophys. J. Int. 200, 935–953. https://doi.org/10.1093/gji/ggu447. [Google Scholar]
  • Zoetemeijer R., Cloetingh S., Sassi W., Roure F. (1993) Modelling of piggyback-basin stratigraphy: Record of tectonic evolution, Tectonophysics 226, 1–4, 253–269. https://doi.org/10.1016/0040-1951(93)90121-Y. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.