Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Article Number 76
Number of page(s) 7
DOI https://doi.org/10.2516/ogst/2018073
Published online 11 December 2018
  • Abry R.G.F., Dupart R.S. (1995) Amine plant troubleshooting and optimization, Hydro. Proc. 4, 41–50. [Google Scholar]
  • Aguila-Hernandez J., Trejo A., Garcia-Flores B.E. (2007) Surface tension and foam behaviour of aqueous solutions of blends of three alkanolamines, as a function of temperature, Coll. Surf. A: Phy. Eng. Asp. 308, 33–46. [CrossRef] [Google Scholar]
  • AkzoNobel (May 2008) AkzoNobel surface chemistry in the oil industry, https://www.akzonobel.com [Google Scholar]
  • Al Dhafeeri M.A. (2007) Identifying sources key to detailed troubleshooting of amine foaming, Oil Gas J. 105, 1–12. [Google Scholar]
  • Alhseinat E., Amr M., Jumah R., Banat F. (2015a) Removal of MDEA foam creators using foam fractionation: Parametric study coupled with foam characterization, J. Nat. Gas Sci. Eng. 26, 502–509. [Google Scholar]
  • Alhseinat E., Pal P., Ganesan A., Banat F. (2015b) Effect of MDEA degradation products on foaming behavior and physical properties of aqueous MDEA solutions, Int. J. Green. Gas Con. 37, 280–286. [CrossRef] [Google Scholar]
  • Alhseinat E., Pal P., Keewan M., Banat F. (2014) Foaming study combined with physical characterization of aqueous MDEA gas sweetening solutions, J. Nat. Gas Sci. Eng. 17, 49–57. [Google Scholar]
  • Arnold K., Stewart M. (1995) Surface production operations: Design of gas-handling systems and facilities, Gulf Publishing Co, Houston, USA. [Google Scholar]
  • Chen X., Freeman S.A., Rochelle G. (2011) Foaming of aqueous piperazine and monoethanolamine for CO2 capture, Int. J. Green. Gas Con. 5, 381–386. [CrossRef] [Google Scholar]
  • Drenckhan W., Saint-Jalmes A. (2015) The science of foaming, Adv. Coll. Inter. Sci. 222, 228–259. [CrossRef] [PubMed] [Google Scholar]
  • Dupart M.S., Bacon T.R., Edwards D.J. (1993) Understanding corrosion in alkanolamine gas treating plants, Hydro. Proc. 93, 75–80. [Google Scholar]
  • El-Haddad M.N. (2013) Chitosan as a green inhibitor for copper corrosion in acidic medium, Inter. J. Bio. Macro. 55, 142–149. [CrossRef] [Google Scholar]
  • Keewan M., Banat F., Alhseinat E., Zain J., Pal P. (2018a) Effect of operating parameters and corrosion inhibitors on foaming behavior of aqueous methyldiethanolamine solutions, J. Pet. Sci. Eng. 165, 358–364. [Google Scholar]
  • Keewan M., Banat F., Alhseinat E., Pal P. (2018b) Prediction of foaming and surface tension of lean MDEA solutions with corrosion inhibitor (bis(2-hydroxyethyl)cocoalkylamine) in continuous foam fractionation column, Chem. Eng. Comm. 205, 871–880, https://doi.org/10.1080/00986445.2017.1423063. [CrossRef] [Google Scholar]
  • Kohl A.L., Nielsen R.B. (1997) Gas purification, Gulf Professional Publishing, Houston, USA. [Google Scholar]
  • Kulkarni A.A., Joshi J.B. (2005) Bubble formation and bubble rise velocity in gas-liquid systems: A Review, Ind. Eng. Chem. Res. 44, 5873–5931. [Google Scholar]
  • Mokhatab S., Poe W.A. (2012) Handbook of natural gas transmission and processing, Elsevier, USA. [Google Scholar]
  • Olajire A.A. (2017) Corrosion inhibition of offshore oil and gas production facilities using organic compound inhibitors – A review, J. Mol. Liq. 248, 775–808. [Google Scholar]
  • Pal P., Banat F. (2016) Comparison of thermal degradation between fresh and industrial aqueous methyldiethanolamine with continuous injection of H2S/CO2 in high pressure reactor, J. Nat. Gas Sci. Eng. 29, 479–487. [Google Scholar]
  • Papavinasam S., Doiron A., Panneerselvam T., Revie R.W. (2007) Effect of hydrocarbons on the internal corrosion of oil and gas pipelines, Corrosion 63, 704–712. [CrossRef] [Google Scholar]
  • Pilon L., Fedorov A.G., Viskanta R. (2002) Analysis of transient thickness of pneumatic foams, Chem. Eng. Sci. 57, 977–990. [Google Scholar]
  • Srinivasan S., Veawab A., Aroonwilas A. (2013) Low toxic corrosion inhibitors for amine-based CO2 capture process, Energy Proc. 37, 890–895. [CrossRef] [Google Scholar]
  • Thitakamol B., Veawab A. (2008) Foaming behavior in CO2 absorption process using aqueous solutions of single and blended alkanolamines, Ind. Eng. Chem. Res. 47, 216–225. [Google Scholar]
  • Thitakamol B., Veawab A., Aroonwilas A. (2009) Foaming in amine-based CO2 capture process: experiment, modeling and simulation, Energy Proc. 1, 1381–1386. [CrossRef] [Google Scholar]
  • Thitakamol B., Veawab A. (2009) Foaming model for CO2 absorption process using aqueous monoethanolamine solutions, Coll. Surf. A: Phy. Eng. Asp. 349, 125–136. [CrossRef] [Google Scholar]
  • Tse K.L., Martin T., McFarlane C.M., Nienow A.W. (2003) Small bubble formation via a coalescence dependent break-up mechanism, Chem. Eng. Sci. 58, 275–286. [Google Scholar]
  • Tse K.L., Martin T.M., McFarlane C.M., Nienow A.W. (1998) Visualisation of bubble coalescence in a coalescence cell a stirred tank and a bubble column, Chem. Eng. Sci. 53, 4031–4036. [Google Scholar]
  • Yaro A.S., Khadom A.A., Wael R.K. (2013) Apricot juice as green corrosion inhibitor of mild steel in phosphoric acid, Alex. Eng. J. 52, 129–135. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.