Open Access
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Numéro d'article 44
Nombre de pages 15
Publié en ligne 16 octobre 2018
  • Abellan A., Noetinger B. (2010) Optimizing subsurface field data acquisition using information theory, Math. Geosci. 42, 6, 603–630, [Google Scholar]
  • Avansi G.D., Schiozer D.J. (2015) UNISIM-I: synthetic model for reservoir development and management applications, IJMSPI 9, 1, 21–30. [Google Scholar]
  • Barroso Viseras F.J., Blanchais S., Verdiere S., Bouzarkouna Z., Schaeffner A., Jannes P. (2014) Non-deterministic approach to define a robust development plan: a complex mature carbonate field case study, in: Abu Dhabi International Petroleum Exhibition and Conference, [Google Scholar]
  • Barroux C.C., Duchet-Suchaux P., Samier P., Nabil R. (2000) Linking reservoir and surface simulators: how to improve the coupled solutions, in: SPE European Petroleum Conference, [Google Scholar]
  • Bento D.F., Schiozer D.J. (2010) The influence of the production lines pressure drop in the definition of the oilfield drainage strategy, in: SPE Latin American and Caribbean Petroleum Engineering Conference, [Google Scholar]
  • Bouzarkouna Z., Ding D.Y., Auger A. (2011) Well placement optimization with the covariance matrix adaptation evolution strategy and meta-models, Comput. Geosci. 16, 1, 75–92, [Google Scholar]
  • Bouzarkouna Z., Ding D.Y., Auger A. (2013) Partially separated metamodels with evolution strategies for well-placement optimization, SPE J. 18, 6, 1003–1011, [CrossRef] [Google Scholar]
  • Brill J.P., Beggs H.D. (1991) Two-phase flow in pipes, 6th edn. Third Printing, University of Tulsa, Tulsa, Oklahoma, [Google Scholar]
  • Campozana F.P., Dos Santos R.L., Madeira M.G., Sousa S.H.G., Spinola M. (2008) Optimization of surface network and platform location using a next generation reservoir simulator coupled with an integrated asset optimizer – an application to an offshore deep water oil field in Brazil, in: International Petroleum Technology Conference, [Google Scholar]
  • Cotrim H.A., von Hohendorff Filho J.C., Schiozer D.J. (2011) Production optimization considering interaction between reservoirs and constrained surface facilities, in: SPE Reservoir Characterisation and Simulation Conference and Exhibition, [Google Scholar]
  • Fonseca L.A., Araújo E.R. (2016) Simultaneous optimization of well locations and control rates under geological uncertainty, IJMSPI 9, 1–7. [CrossRef] [Google Scholar]
  • Gaspar A.T.F.S., Barreto C.E.A.G., Muñoz Mazo E.O., Schiozer J.C.V., Schiozer D.J. (2014) Application of Assisted Optimization to Aid Oil Exploitation Strategy Selection for Offshore Fields, in: SPE Latin America and Caribbean Petroleum Engineering Conference, [Google Scholar]
  • Gaspar A.T.F.S., Avansi G.D., Santos A.A.S., Hohendorff Filho J.C.V., Schiozer D.J. (2015) UNISIM-I-D: benchmark studies for oil field development and production strategy selection, IJMSPI 9, 47–55. [Google Scholar]
  • Gaspar A.T.F.S., Barreto C.E.A.G., Schiozer D.J. (2016) Assisted process for design optimization of oil exploitation strategy, J. Petrol. Sci. Eng. 146, 473–488, [CrossRef] [Google Scholar]
  • Guerillot D., Roggero F. (1998) Method for predicting, by means of an inversion technique, the evolution of the production of an underground reservoir, US Patent No. 5,764,515. 9 June. [Google Scholar]
  • Hegstad B.K., Saetrom J. (2014) Using multiple realizations from an integrated uncertainty analysis to make more robust decisions in field development, in: Abu Dhabi International Petroleum Exhibition and Conference, [Google Scholar]
  • Hiebert A.D., Khoshkbarchi M., Sammon P.H., Alves I.N., Rodrigues J., Belien A.J., Valvatne P.H. (2011) An Advanced framework for simulating connected reservoirs, wells and production facilities, in: SPE Reservoir Simulation Symposium, [Google Scholar]
  • Kosmala A., Aanonsen S.I., Gajraj A., Biran V., Brusdal K., Stokkenes A., Torrens R. (2003) Coupling of a surface network with reservoir simulation, in: SPE Annual Technical Conference and Exhibition, [Google Scholar]
  • Magalhães, T.C.B., Martini, R.F., Schiozer, D.J. (2005). The influence of production system constraints on the reservoir strategy optimization, in: 18° Congresso Internacional de Engenharia Mecânica – COBEM. [Google Scholar]
  • Mahmudi M., Sadeghi M.T. (2013) The optimization of continuous gas lift process using an integrated compositional model, J. Petrol. Sci. Eng. 108, 321–327, [CrossRef] [Google Scholar]
  • Maschio C., Vidal A.C., Schiozer D.J. (2008) A framework to integrate history matching and geostatistical modeling using genetic algorithm and direct search methods, J. Petrol. Sci. Eng. 63, 1–4, 34–42, [CrossRef] [Google Scholar]
  • Nwakile M.M., Schulze-Riegert R., Trick M.D. (2011) Gas field production system optimization using coupled reservoir – network simulator and optimization framework, in: Nigeria Annual International Conference and Exhibition, [Google Scholar]
  • Oliveira L.C.G. (1989) Simulador para Rede Coletora Submarina de Produção, Master’s Thesis, Faculdade de Engenharia, Departamento de Engenharia Mecânica, Universidade Estadual de Campinas, Campinas, 248 p. [Google Scholar]
  • Rahmawati S.D., Whitson C.H., Foss B., Kuntadi A. (2012) Integrated field operation and optimization, J. Petrol. Sci. Eng. 81, 161–170, [CrossRef] [Google Scholar]
  • Ray T., Sarker R. (2007) Genetic algorithm for solving a gas lift optimization problem, J. Petrol. Sci. Eng. 59, 1–2, 84–96, [CrossRef] [Google Scholar]
  • Rosa V.R., Martins Ferreira Filho V. J. (2012) Optimizing the location of platforms and manifolds, in: Volume 6: Materials Technology; Polar and Arctic Sciences and Technology; Petroleum Technology Symposium, [Google Scholar]
  • Rotondi M., Cominelli A., Di Giorgio C., Rossi R., Vignati E., Carati B. (2008) The Benefits of integrated asset modelling: lessons learned from field cases, in: Europec/EAGE Conference and Exhibition, [Google Scholar]
  • Schiozer D.J., Santos A.A.S., Drumond P.S. (2015) Integrated model based decision analysis in twelve steps applied to petroleum fields development and management, in: EUROPEC 2015, [Google Scholar]
  • Standing M.B. (1947) A pressure–volume–temperature correlation for mixtures of California oils and gases, API, Drill Prod Pract, pp. 275–287. [Google Scholar]
  • Tillero E., Rincón J., Nuñez H. (2014) An Innovative workflow for appropriate selection of subsurface-surface model integration scheme based on petroleum production system nature, user needs, and integrated simulation performance, in: SPE Latin America and Caribbean Petroleum Engineering Conference, [Google Scholar]
  • Victorino I.R.S., Hohendorff Filho J.C.V., Schiozer D.J. (2016) Sensibility analysis of production system parameters for integrated simulation of reservoir and production systems, in: Rio Oil Gas Expo and Conference. [Google Scholar]
  • Von Hohendorff Filho J.C., Schiozer D.J. (2014) Evaluation of explicit coupling between reservoir simulators and production system, J. Energy Resour. Technol. 136, 4, 044501, [CrossRef] [Google Scholar]
  • Von Hohendorff Filho J.C., Schiozer D.J. (2017) Evaluation of reservoir and production system integration in production strategy selection, in: SPE Reservoir Simulation Conference, [Google Scholar]
  • Yang C., Nghiem L.X., Card C., Bremeier M. (2007) Reservoir model uncertainty quantification through computer-assisted history matching, in: SPE Annual Technical Conference and Exhibition, [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.