Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Numéro d'article 43
Nombre de pages 22
DOI https://doi.org/10.2516/ogst/2018020
Publié en ligne 23 octobre 2018
  • Frequia S. (2002) Modeling of CO2 removal from flue gases with monoethanolamine, MSc thesis in Chemical Engineering, The University of Texas at Austin. [Google Scholar]
  • Garcia Camacho F., Molina Grima E., Chisti Y. (2004) Mixing in bubble column and airlift reactors, Chem. Eng. Res. Des. 82, 1367–1374. [CrossRef] [Google Scholar]
  • Tursunov O, Kustov L, Kustov A. (2017) A brief review of carbon dioxide hydrogenation to methanol over copper and iron based catalysts, Oil Gas Sci. Technol. − Rev. IFP Energies nouvelles 72, 30. [CrossRef] [Google Scholar]
  • Passalacqua R., Centi G., Perathoner S. (2015) Solar production of fuels from water and CO2: perspectives and opportunities for a sustainable use of renewable energy, Oil Gas Sci. Technol. − Rev. IFP Energies nouvelles, 70, 5, 799–815. [CrossRef] [Google Scholar]
  • Al-Baghli N.A., Pruess S.A., Yesavage V.F., Selim M.S. (2001) A rate-based model for the design of gas absorbers for the removal of CO2 and H2S using aqueous solutions of MEA and DEA, Fluid Phase Equilib. 185, 31–43. [CrossRef] [Google Scholar]
  • Kohl A.L., Nielsen R.B. (1997) Gas Purification, 5th edition, Houston. [Google Scholar]
  • Bishnoi S. (2000) Carbon dioxide absorption and solution equilibrium in piperazine activated methyldiethanolamine, PhD. Dissertation, The University of Texas at Austin. [Google Scholar]
  • Dang H. (2001) CO2 Absorption Rate and Solubility in Monoethanolamine/Piperazine/Water, MSc Thesis, The University of Texas at Austin. [Google Scholar]
  • Cullinane J.T. (2005) Thermodynamics and kinetics of aqueous piperazine with potassium carbonate for carbon dioxide absorption, PhD Dissertation, The University of Texas at Austin. [CrossRef] [Google Scholar]
  • Sharifi A., Omidbakhsh Amiri E. (2017) Effect of the tower type on the gas sweetening process, Oil Gas Sci. Technol. − Rev. IFP Energies nouvelles 72, 24. [CrossRef] [Google Scholar]
  • Wiegand J. (1971) Falling-film evaporators and their applications in the food industry, J. Appl. Chem. Biotechnol., 21, 12, 351–358. [CrossRef] [Google Scholar]
  • Murray A.J. (1986) Practical and economic benefits of falling film evaporation, Plant/Oper. Prog. 5, 1, 31–34. [CrossRef] [Google Scholar]
  • Akanksha Pant K.K., Srivastava V.K. (2007) Modeling of sulphonation of tridecylbenzene in a falling film reactor, Math. Comput. Modell. 46, 9, 1332–1344. [CrossRef] [Google Scholar]
  • Bashipour F., Rahimi A., Khorasani S.N., Naderinik A. (2017) Experimental optimization and modeling of sodium sulfide production from H2S-Rich Off-Gas via response surface methodology and artificial neural network, Oil Gas Sci. Technol. − Rev. IFP Energies nouvelles 72, 9. [CrossRef] [Google Scholar]
  • Bird R., Steward W., Lightfoot E. (1960) Transport phenomena, Wiley, New York. [Google Scholar]
  • Hanratty T., Engen J.M. (1957) Interaction between a turbulent air stream and a moving water surface, AIChE J. 3, 299. [CrossRef] [Google Scholar]
  • Cohen L., Hanratty T. (1965) Generation of waves in the concurrent flow of air and a liquid, AIChE J. 11, 138. [CrossRef] [Google Scholar]
  • Coulson J. Richardson J. (1983) Chemical Engineering, Vol. 1, 3rd Edition, Pergamon Press, England. [Google Scholar]
  • Hatta S. (1932) Technol, Repts, Tohoku Imp, Univ., 10, 119. [Google Scholar]
  • Yih S.M., Liu J.L. (1983) Prediction of heat transfer in turbulent falling liquid films with or without interfacial shear, AIChE J. 29, 903–909. [CrossRef] [Google Scholar]
  • Yih S.M., Seagrave R.C. (1978) Hydrodynamic stability of thin liquid films flowing down an inclined plane with accompanying heat transfer and interfacial shear, AIChE J. 24, 5, 803–810. [CrossRef] [Google Scholar]
  • Danckwerts P.V. (1979) The reaction of CO2 with ethanolamines, Chem. Eng. Sci. 4, 34, 443–446. [CrossRef] [Google Scholar]
  • Yunda, Liu, Luzheng Zhang, Watansiri S. (1999) Representing vapor−liquid equilibrium for an aqueous MEA−CO2 system using the electrolyte nonrandom-two-liquid model, Ind. Eng. Chem. Res. 38, 2080–2090. [CrossRef] [Google Scholar]
  • Danckwerts P.V., Sharma M.M. (1966) Absorption of carbon dioxide into solutions of alkalis and amines, The Chemical Engineer CE, 244–280. [Google Scholar]
  • Savage D.W, Kim C.J. (1985) Chemical kinetics of carbon dioxide reactions with diethanolamine and diisopropanolamine in aqueous solutions, AIChE J. 31, 296. [CrossRef] [Google Scholar]
  • Alatiqi I., Sabri M.F., Bouhamra W., Alper E. (1994) Steady −State Rate −based modeling for CO2/Amine absorption desorption systems, Gas Sep. Purif. 4448, 1, 3–11. [CrossRef] [Google Scholar]
  • Astarita G., Marrucci G., Gioia F. (1964) The influence of carbonation ratio and total amine concentration on carbon dioxide absorption in aqueous monoethanolamine solutions, Chem. Eng. Sci. 19, 95–103. [CrossRef] [Google Scholar]
  • Mc Ready FM., Hanratty T. (1984) In gas transfer at water surface, Reidel D., Dardrecht S. (eds), Holland. [Google Scholar]
  • Yih S.M. (1987) Modeling heat and mass transfer in wavy and turbulent falling liquid films, Heat and Mass Transfer, 21, 6, 373–381. [Google Scholar]
  • Vivian S., Peaceman W. (1956) Liquid-side resistance in gas absorption, AIChE J., 2, 4, 437–443. [CrossRef] [Google Scholar]
  • Haruo H., Satoru A., Yoshio K. (1979) Absorption of carbon dioxide into aqueous monoethanolamine solutions, AIChE J. 25, 5, 793–800. [CrossRef] [Google Scholar]
  • Sada E., Kamazawa H., Butt M.A. (1976) Chemical absorption kinetics over a wide range of contract time: absorption of carbon dioxide into aqueous solutions of monoethanolamine, AIChE J. 22, 1, 196–198. [CrossRef] [Google Scholar]
  • Danckwerts P.V. (1967) The absorption of carbon dioxide into aqueous amine solutions and the effects of catalysis, Trans. Inst. Chem. Eng. 45, T32. [Google Scholar]
  • Hikita H., Asai, S. (1964) Gas absorption with (m,n) th order irreversible chemical reaction, Int. Chem. Eng. 4, 332–340. [Google Scholar]
  • Caplow M. (1968) Kinetics of carbamate formation and breakdown, Am. Chem. Soc. 90, 24, 6795–6803. [CrossRef] [Google Scholar]
  • Blauwhoff P.M.M., Versteeg G.F., Van Swaaij W.P.M. (1983) A study on the reaction between CO2 and alkanolamines in aqueous solutions, Chem. Eng. Sci., 38, 1411–1429. [CrossRef] [Google Scholar]
  • Versteeg G.F., Van Swaaij W.P.M. (1988) Solubility and diffusivity of acid gases CO2 and N2O in aqueous alkanolamine solutions, Chem. Eng. Sci. 43, 573–585. [CrossRef] [Google Scholar]
  • Wesseling P. (1982) Multigrid Method, Springer-Verlag, Berlin. [Google Scholar]
  • Hobler T., Bandrowski J., Hartland S. (1996) Mass Transfer and Absorber, P.R.P., Warszawa. [Google Scholar]
  • Kharisov M.A., Kogan V.B. (1967) A distributing device for thin-film evaporation equipment, Int. Chem. Eng. 7, 189–190. [Google Scholar]
  • Luma J.S. (1996) Absorption of carbon dioxide by sodium hydroxide and monoethanolamine solution in a packed column, MSc Thesis, University of Technology, Iraq. [Google Scholar]
  • Thomas W.J. (1966) The absorption of carbon dioxide in aqueous monoethanolamine in a laminar jet, AIChE J. 12, 1051–1057. [CrossRef] [Google Scholar]
  • Maddox R.N. (1984) Gas and Liquid Sweetening. Gas Conditioning and Processing, 3rd ed., Norman, OK, Campbell Petroleum Series, John M. Campbell & Co. [Google Scholar]
  • Abid M.F. (2002) Mathematical model and experimental measurement in a falling film reactor, Ph.D Thesis, University of Technology. [Google Scholar]
  • Hikita H., Asai S., Ishikawa H., Honda M. (1977) The kinetics of reactions of carbon dioxide with monoethanolamine, diethanolamine and triethanolamine by a rapid mixing method, Chem. Eng. J. 13, 1, 7–12. [CrossRef] [Google Scholar]
  • Tontiwachwuthikul P., Meisen A., Lim C.J. (1992) CO2 absorption by NaOH, monoethanolamine and 2-amino-2-methyl-1-propanol solutions in a packed column, Chem. Eng. Sci. 47, 381–390. [CrossRef] [Google Scholar]
  • Wen Long C., Kouichi H., Ze Shae C., Atsushi A., Peng H., Takao K. (2004) Heat transfer enhancement by additive in vertical falling film absorption of H2O/LiBr, Appl. Therm. Eng. 24, 281–298. [CrossRef] [Google Scholar]
  • Weibin C., Yujun W., Shenlin Z. (2005) Flow and mass transfer characteristics in a falling-film extractor using hollow fiber as packing, Chem. Eng. J. 108, 161–168. [CrossRef] [Google Scholar]
  • Hitchcok J.A., Cadot S.D. (1989), Rate of absorption of carbon dioxide, Chem. Eng. Sci., 8, 211. [Google Scholar]
  • Pereira Duarte S., Barreto G.F., Lemcoff N. (1984) Comparison of two-dimensional models for fixed bed catalytic reactors, Chem. Eng. Sci., 39, 1017–1024. [CrossRef] [Google Scholar]
  • Davidson J.F. (1957) The determination of diffusion coefficient for sparingly soluble gases in liquids, Trans. Inst. Chem. Eng. 35, 51. [Google Scholar]
  • King C.J. (1966) Turbulent liquid phase mass transfer at a free gas–liquid interface, Ind. Eng. Chem. Fund. 5, 1, 1–8. [CrossRef] [Google Scholar]
  • Kent R.L., Eisenberg B. (1976) Better data for amine treating, Hydrocarbon Process. 12, 87. [Google Scholar]
  • Yunda, Liu, Luzheng Zhang, Watansiri S. (1999) Representing vapor-liquid equilibrium for an aqueous MEA-CO2 system using the electrolyte nonrandom-two-liquid model, Ind. Eng. Chem. Res. 38, 2080–2090. [CrossRef] [Google Scholar]
  • Putta K.R, Svendsen H.F, Knuutila H.K (2017) CO2 absorption into loaded aqueous MEAsolutions: impact of different model parameter correlations and thermodynamic models on the absorption rate model predictions, Chem. Eng. J. 327, 868–880. [CrossRef] [Google Scholar]
  • Aboudheir A., Tontiwachwuthikul P., Chakma A., Idem R. (2003) Kinetic of the reactive absorption of carbon dioxide in high CO2-loaded, concentrated aqueous monoethanolamine solutions, Chem. Eng. Sci. 58, 5195–5210. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.