Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Article Number 44
Number of page(s) 15
DOI https://doi.org/10.2516/ogst/2018042
Published online 16 October 2018
  • Abellan A., Noetinger B. (2010) Optimizing subsurface field data acquisition using information theory, Math. Geosci. 42, 6, 603–630, https://doi.org/10.1007/s11004-010-9285-6. [Google Scholar]
  • Avansi G.D., Schiozer D.J. (2015) UNISIM-I: synthetic model for reservoir development and management applications, IJMSPI 9, 1, 21–30. [Google Scholar]
  • Barroso Viseras F.J., Blanchais S., Verdiere S., Bouzarkouna Z., Schaeffner A., Jannes P. (2014) Non-deterministic approach to define a robust development plan: a complex mature carbonate field case study, in: Abu Dhabi International Petroleum Exhibition and Conference, https://doi.org/10.2118/171904-ms. [Google Scholar]
  • Barroux C.C., Duchet-Suchaux P., Samier P., Nabil R. (2000) Linking reservoir and surface simulators: how to improve the coupled solutions, in: SPE European Petroleum Conference, https://doi.org/10.2118/65159-ms. [Google Scholar]
  • Bento D.F., Schiozer D.J. (2010) The influence of the production lines pressure drop in the definition of the oilfield drainage strategy, in: SPE Latin American and Caribbean Petroleum Engineering Conference, https://doi.org/10.2118/138259-ms. [Google Scholar]
  • Bouzarkouna Z., Ding D.Y., Auger A. (2011) Well placement optimization with the covariance matrix adaptation evolution strategy and meta-models, Comput. Geosci. 16, 1, 75–92, https://doi.org/10.1007/s10596-011-9254-2. [Google Scholar]
  • Bouzarkouna Z., Ding D.Y., Auger A. (2013) Partially separated metamodels with evolution strategies for well-placement optimization, SPE J. 18, 6, 1003–1011, https://doi.org/10.2118/143292-pa. [CrossRef] [Google Scholar]
  • Brill J.P., Beggs H.D. (1991) Two-phase flow in pipes, 6th edn. Third Printing, University of Tulsa, Tulsa, Oklahoma, [Google Scholar]
  • Campozana F.P., Dos Santos R.L., Madeira M.G., Sousa S.H.G., Spinola M. (2008) Optimization of surface network and platform location using a next generation reservoir simulator coupled with an integrated asset optimizer – an application to an offshore deep water oil field in Brazil, in: International Petroleum Technology Conference, https://doi.org/10.2523/iptc-12500-ms. [Google Scholar]
  • Cotrim H.A., von Hohendorff Filho J.C., Schiozer D.J. (2011) Production optimization considering interaction between reservoirs and constrained surface facilities, in: SPE Reservoir Characterisation and Simulation Conference and Exhibition, https://doi.org/10.2118/148334-ms. [Google Scholar]
  • Fonseca L.A., Araújo E.R. (2016) Simultaneous optimization of well locations and control rates under geological uncertainty, IJMSPI 9, 1–7. [CrossRef] [Google Scholar]
  • Gaspar A.T.F.S., Barreto C.E.A.G., Muñoz Mazo E.O., Schiozer J.C.V., Schiozer D.J. (2014) Application of Assisted Optimization to Aid Oil Exploitation Strategy Selection for Offshore Fields, in: SPE Latin America and Caribbean Petroleum Engineering Conference, https://doi.org/10.2118/169464-ms. [Google Scholar]
  • Gaspar A.T.F.S., Avansi G.D., Santos A.A.S., Hohendorff Filho J.C.V., Schiozer D.J. (2015) UNISIM-I-D: benchmark studies for oil field development and production strategy selection, IJMSPI 9, 47–55. [Google Scholar]
  • Gaspar A.T.F.S., Barreto C.E.A.G., Schiozer D.J. (2016) Assisted process for design optimization of oil exploitation strategy, J. Petrol. Sci. Eng. 146, 473–488, https://doi.org/10.1016/j.petrol.2016.05.042. [CrossRef] [Google Scholar]
  • Guerillot D., Roggero F. (1998) Method for predicting, by means of an inversion technique, the evolution of the production of an underground reservoir, US Patent No. 5,764,515. 9 June. [Google Scholar]
  • Hegstad B.K., Saetrom J. (2014) Using multiple realizations from an integrated uncertainty analysis to make more robust decisions in field development, in: Abu Dhabi International Petroleum Exhibition and Conference, https://doi.org/10.2118/171831-ms. [Google Scholar]
  • Hiebert A.D., Khoshkbarchi M., Sammon P.H., Alves I.N., Rodrigues J., Belien A.J., Valvatne P.H. (2011) An Advanced framework for simulating connected reservoirs, wells and production facilities, in: SPE Reservoir Simulation Symposium, https://doi.org/10.2118/141012-ms. [Google Scholar]
  • Kosmala A., Aanonsen S.I., Gajraj A., Biran V., Brusdal K., Stokkenes A., Torrens R. (2003) Coupling of a surface network with reservoir simulation, in: SPE Annual Technical Conference and Exhibition, https://doi.org/10.2118/84220-ms. [Google Scholar]
  • Magalhães, T.C.B., Martini, R.F., Schiozer, D.J. (2005). The influence of production system constraints on the reservoir strategy optimization, in: 18° Congresso Internacional de Engenharia Mecânica – COBEM. [Google Scholar]
  • Mahmudi M., Sadeghi M.T. (2013) The optimization of continuous gas lift process using an integrated compositional model, J. Petrol. Sci. Eng. 108, 321–327, https://doi.org/10.1016/j.petrol.2013.05.008. [CrossRef] [Google Scholar]
  • Maschio C., Vidal A.C., Schiozer D.J. (2008) A framework to integrate history matching and geostatistical modeling using genetic algorithm and direct search methods, J. Petrol. Sci. Eng. 63, 1–4, 34–42, https://doi.org/10.1016/j.petrol.2008.08.001. [CrossRef] [Google Scholar]
  • Nwakile M.M., Schulze-Riegert R., Trick M.D. (2011) Gas field production system optimization using coupled reservoir – network simulator and optimization framework, in: Nigeria Annual International Conference and Exhibition, https://doi.org/10.2118/150770-ms. [Google Scholar]
  • Oliveira L.C.G. (1989) Simulador para Rede Coletora Submarina de Produção, Master’s Thesis, Faculdade de Engenharia, Departamento de Engenharia Mecânica, Universidade Estadual de Campinas, Campinas, 248 p. [Google Scholar]
  • Rahmawati S.D., Whitson C.H., Foss B., Kuntadi A. (2012) Integrated field operation and optimization, J. Petrol. Sci. Eng. 81, 161–170, https://doi.org/10.1016/j.petrol.2011.12.027. [CrossRef] [Google Scholar]
  • Ray T., Sarker R. (2007) Genetic algorithm for solving a gas lift optimization problem, J. Petrol. Sci. Eng. 59, 1–2, 84–96, https://doi.org/10.1016/j.petrol.2007.03.004. [CrossRef] [Google Scholar]
  • Rosa V.R., Martins Ferreira Filho V. J. (2012) Optimizing the location of platforms and manifolds, in: Volume 6: Materials Technology; Polar and Arctic Sciences and Technology; Petroleum Technology Symposium, https://doi.org/10.1115/omae2012-84211. [Google Scholar]
  • Rotondi M., Cominelli A., Di Giorgio C., Rossi R., Vignati E., Carati B. (2008) The Benefits of integrated asset modelling: lessons learned from field cases, in: Europec/EAGE Conference and Exhibition, https://doi.org/10.2118/113831-ms. [Google Scholar]
  • Schiozer D.J., Santos A.A.S., Drumond P.S. (2015) Integrated model based decision analysis in twelve steps applied to petroleum fields development and management, in: EUROPEC 2015, https://doi.org/10.2118/174370-ms. [Google Scholar]
  • Standing M.B. (1947) A pressure–volume–temperature correlation for mixtures of California oils and gases, API, Drill Prod Pract, pp. 275–287. [Google Scholar]
  • Tillero E., Rincón J., Nuñez H. (2014) An Innovative workflow for appropriate selection of subsurface-surface model integration scheme based on petroleum production system nature, user needs, and integrated simulation performance, in: SPE Latin America and Caribbean Petroleum Engineering Conference, https://doi.org/10.2118/169243-ms. [Google Scholar]
  • Victorino I.R.S., Hohendorff Filho J.C.V., Schiozer D.J. (2016) Sensibility analysis of production system parameters for integrated simulation of reservoir and production systems, in: Rio Oil Gas Expo and Conference. [Google Scholar]
  • Von Hohendorff Filho J.C., Schiozer D.J. (2014) Evaluation of explicit coupling between reservoir simulators and production system, J. Energy Resour. Technol. 136, 4, 044501, https://doi.org/10.1115/1.4028860. [CrossRef] [Google Scholar]
  • Von Hohendorff Filho J.C., Schiozer D.J. (2017) Evaluation of reservoir and production system integration in production strategy selection, in: SPE Reservoir Simulation Conference, https://doi.org/10.2118/182624-ms. [Google Scholar]
  • Yang C., Nghiem L.X., Card C., Bremeier M. (2007) Reservoir model uncertainty quantification through computer-assisted history matching, in: SPE Annual Technical Conference and Exhibition, https://doi.org/10.2118/109825-ms. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.