Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Numéro d'article 72
Nombre de pages 17
DOI https://doi.org/10.2516/ogst/2018074
Publié en ligne 10 décembre 2018
  • Rahman M.M., Hossain M.M., Crosby D.G., Rahman M.K., Rahman S.S. (2002) Analytical, numerical and experimental investigations of transverse fracture propagation from horizontal wells, J. Pet. Sci. Eng. 35, 127–150. [Google Scholar]
  • Hossain M.M., Rahman M.K. (2008) Numerical simulation of complex fracture growth during tight reservoir stimulation by hydraulic fracturing, J. Pet. Sci. Eng. 60, 86–104. [Google Scholar]
  • Chen Z.R., Bunger A.P., Zhang X., Jeffrey R.G. (2009) Cohesive zone finite element based modeling of hydraulic fractures, Acta Mech. Solida Sin. 22, 443–452. [CrossRef] [Google Scholar]
  • Yao Y., Gosavi S.V., Searles K.H., Ellison T.K. (2010) Cohesive fracture mechanics based analysis to model ductile rock fracture, 44th US Rock Mechanics Symposium and 5th US-Canada Rock Mechanics Symposium, June 27–30, Salt Lake City, Utah, 83457-13. [Google Scholar]
  • Gu Y.T., Wang Q.X., Lam K.Y., Dai K.Y. (2007) A pseudo-elastic local meshless method for analysis of material nonlinear problems in solids, Eng. Anal. Bound. Elem. 31, 771–782. [Google Scholar]
  • Zhang Q.H. (2011) Theoretical analysis of numerical integration in Galerkin meshless methods, Bit Numer. Math. 51, 459–480. [CrossRef] [Google Scholar]
  • Kennett D.J., Timme S., Angulo J., Badcock K.J. (2013) An implicit meshless method for application in computational fluid dynamics, Int. J. Numer. Methods Fluids 71, 1007–1028. [Google Scholar]
  • Metsis P., Lantzounis N., Papadrakakis M. (2015) A new hierarchical partition of unity formulation of EFG meshless methods, Comput. Methods Appl. Mech. Eng. 283, 782–805. [Google Scholar]
  • Belytschko T., Lu Y.Y., Gu L. (1994) Element-free Galerkin method, Int. J. Numer. Methods Fluids 37, 229–256. [Google Scholar]
  • Belytschko T., Gu L., Lu Y.Y. (1994) Fracture and crack growth by element-free Galerkinmethods, Model. Simul. Mater. Sci. Eng. 115, 277–286. [Google Scholar]
  • Belytschko T., Lu Y.Y., Gu L. (1995) Crack propagation by element-free Galerkin methods, Eng. Fract. Mech. 51, 295–315. [Google Scholar]
  • Klysl P., Belytschko T. (1999) The element-free Galerkin method for dynamic propagation of arbitrary 3-D cracks, Int. J. Numer. Methods Eng. 44, 767–800. [Google Scholar]
  • Kou X.D., Zhou W.Y. (2000) Using element-free method to trace crack propagation, Chinese J. Rock Mech. Eng. 19, 18–23. [Google Scholar]
  • Hu Y.J., Zhou W.Y., Lin P. (2003) Application of EFG method to three-dimensional fracture mechanics, Rock Soil Mech. 24, 21–24. [Google Scholar]
  • Meng W.Y., Zhuo J.S. (2005) Displacement model for meshless method and its application to analysis of fracture problem, Chinese J. Geotech. Eng. 27, 828–831. [Google Scholar]
  • Shen M. (2006) Simulation of hydraulic fracturing of rock mass using element-free method, Zhejiang University, Hangzhou. [Google Scholar]
  • Oliae M.N., Pak A., Soga K. (2014) A coupled hydro-mechanical analysis for prediction of hydraulic fracture propagation in saturated porous media using EFG mesh-less method, Comput. Geotech. 55, 254–266. [Google Scholar]
  • Fries T.P., Schaetzer M., Weber N. (2014) XFEM simulation of hydraulic fracturing 3D in D with emphasis on stress intensity factors, 11th World Congress on Computational Mechanics (WCCM)/5th European Conference on Computational Mechanics (ECCM)/6th European Conference on Computational Fluid Dynamics (ECFD) II–IV, 3282–3293. [Google Scholar]
  • Shi L.Y., Yu T.T., Tinh Q.B. (2015) Numerical modelling of hydraulic fracturing in rock mass by XFEM, Soil Mech. Found. Eng. 52, 74–83. [CrossRef] [Google Scholar]
  • Deng G.Z., Wang S.L., Huang B.X. (2004) Research on behavior character of crack development induced by hydraulic fracturing in coal-rock mass, Chinese J. Rock Mech. Eng. 23, 3489–3493. [Google Scholar]
  • Lv Y.M., Li Z.P., Tang D.Z., Xu H., Chen X.Z. (2016) Permeability variation models for unsaturated coalbed methane reservoirs, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 71, 32. [CrossRef] [Google Scholar]
  • Ding S.D., Sun L.M. (1997) Fracture mechanic, China Machine Press, Beijing. [Google Scholar]
  • Trunk B., Schober G., Helbling A.K., Wittmann F.H. (1999) Fracture mechanics parameters of autoclaved aerated concrete, Cem. Concr. Res. 29, 855–859. [Google Scholar]
  • Ioannides A.M., Sengupta S. (2003) Crack propagation in Portland cement concrete beams – Implications for pavement design, 82nd Annual Meeting of the Transportation-Research-Board/Transportation Record-Series 1853, 110–117. [CrossRef] [Google Scholar]
  • Adachi J., Siebrits E., Peirce A., Desroches J. (2007) Computer simulation of hydraulic fractures, Int. J. Rock Mech. Min. Sci. 44, 739–757. [CrossRef] [Google Scholar]
  • Zhao Y.L., Zhang L.H., Feng G.Q., Zhang B.N., Kang B. (2016) Performance analysis of fractured wells with stimulated reservoir volume in coal seam reservoirs, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 71, 8. [CrossRef] [Google Scholar]
  • Li Z.L., Ren Q.W., Wang Y.H. (2005) Formula for water pressure distribution in rock or concrete fractures formed by hydraulic fracturing, J. Hydraul. Eng. 36, 656–661. [Google Scholar]
  • Guo W., Yu R.Z., Zhang X.W., Hu Z.M. (2018) Physical and mathematical modeling of gas production in shale matrix, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 73, 12. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.