Open Access
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Article Number 72
Number of page(s) 17
Published online 10 December 2018
  • Rahman M.M., Hossain M.M., Crosby D.G., Rahman M.K., Rahman S.S. (2002) Analytical, numerical and experimental investigations of transverse fracture propagation from horizontal wells, J. Pet. Sci. Eng. 35, 127–150. [Google Scholar]
  • Hossain M.M., Rahman M.K. (2008) Numerical simulation of complex fracture growth during tight reservoir stimulation by hydraulic fracturing, J. Pet. Sci. Eng. 60, 86–104. [Google Scholar]
  • Chen Z.R., Bunger A.P., Zhang X., Jeffrey R.G. (2009) Cohesive zone finite element based modeling of hydraulic fractures, Acta Mech. Solida Sin. 22, 443–452. [CrossRef] [Google Scholar]
  • Yao Y., Gosavi S.V., Searles K.H., Ellison T.K. (2010) Cohesive fracture mechanics based analysis to model ductile rock fracture, 44th US Rock Mechanics Symposium and 5th US-Canada Rock Mechanics Symposium, June 27–30, Salt Lake City, Utah, 83457-13. [Google Scholar]
  • Gu Y.T., Wang Q.X., Lam K.Y., Dai K.Y. (2007) A pseudo-elastic local meshless method for analysis of material nonlinear problems in solids, Eng. Anal. Bound. Elem. 31, 771–782. [Google Scholar]
  • Zhang Q.H. (2011) Theoretical analysis of numerical integration in Galerkin meshless methods, Bit Numer. Math. 51, 459–480. [CrossRef] [Google Scholar]
  • Kennett D.J., Timme S., Angulo J., Badcock K.J. (2013) An implicit meshless method for application in computational fluid dynamics, Int. J. Numer. Methods Fluids 71, 1007–1028. [Google Scholar]
  • Metsis P., Lantzounis N., Papadrakakis M. (2015) A new hierarchical partition of unity formulation of EFG meshless methods, Comput. Methods Appl. Mech. Eng. 283, 782–805. [Google Scholar]
  • Belytschko T., Lu Y.Y., Gu L. (1994) Element-free Galerkin method, Int. J. Numer. Methods Fluids 37, 229–256. [Google Scholar]
  • Belytschko T., Gu L., Lu Y.Y. (1994) Fracture and crack growth by element-free Galerkinmethods, Model. Simul. Mater. Sci. Eng. 115, 277–286. [Google Scholar]
  • Belytschko T., Lu Y.Y., Gu L. (1995) Crack propagation by element-free Galerkin methods, Eng. Fract. Mech. 51, 295–315. [Google Scholar]
  • Klysl P., Belytschko T. (1999) The element-free Galerkin method for dynamic propagation of arbitrary 3-D cracks, Int. J. Numer. Methods Eng. 44, 767–800. [Google Scholar]
  • Kou X.D., Zhou W.Y. (2000) Using element-free method to trace crack propagation, Chinese J. Rock Mech. Eng. 19, 18–23. [Google Scholar]
  • Hu Y.J., Zhou W.Y., Lin P. (2003) Application of EFG method to three-dimensional fracture mechanics, Rock Soil Mech. 24, 21–24. [Google Scholar]
  • Meng W.Y., Zhuo J.S. (2005) Displacement model for meshless method and its application to analysis of fracture problem, Chinese J. Geotech. Eng. 27, 828–831. [Google Scholar]
  • Shen M. (2006) Simulation of hydraulic fracturing of rock mass using element-free method, Zhejiang University, Hangzhou. [Google Scholar]
  • Oliae M.N., Pak A., Soga K. (2014) A coupled hydro-mechanical analysis for prediction of hydraulic fracture propagation in saturated porous media using EFG mesh-less method, Comput. Geotech. 55, 254–266. [Google Scholar]
  • Fries T.P., Schaetzer M., Weber N. (2014) XFEM simulation of hydraulic fracturing 3D in D with emphasis on stress intensity factors, 11th World Congress on Computational Mechanics (WCCM)/5th European Conference on Computational Mechanics (ECCM)/6th European Conference on Computational Fluid Dynamics (ECFD) II–IV, 3282–3293. [Google Scholar]
  • Shi L.Y., Yu T.T., Tinh Q.B. (2015) Numerical modelling of hydraulic fracturing in rock mass by XFEM, Soil Mech. Found. Eng. 52, 74–83. [CrossRef] [Google Scholar]
  • Deng G.Z., Wang S.L., Huang B.X. (2004) Research on behavior character of crack development induced by hydraulic fracturing in coal-rock mass, Chinese J. Rock Mech. Eng. 23, 3489–3493. [Google Scholar]
  • Lv Y.M., Li Z.P., Tang D.Z., Xu H., Chen X.Z. (2016) Permeability variation models for unsaturated coalbed methane reservoirs, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 71, 32. [CrossRef] [Google Scholar]
  • Ding S.D., Sun L.M. (1997) Fracture mechanic, China Machine Press, Beijing. [Google Scholar]
  • Trunk B., Schober G., Helbling A.K., Wittmann F.H. (1999) Fracture mechanics parameters of autoclaved aerated concrete, Cem. Concr. Res. 29, 855–859. [Google Scholar]
  • Ioannides A.M., Sengupta S. (2003) Crack propagation in Portland cement concrete beams – Implications for pavement design, 82nd Annual Meeting of the Transportation-Research-Board/Transportation Record-Series 1853, 110–117. [CrossRef] [Google Scholar]
  • Adachi J., Siebrits E., Peirce A., Desroches J. (2007) Computer simulation of hydraulic fractures, Int. J. Rock Mech. Min. Sci. 44, 739–757. [CrossRef] [Google Scholar]
  • Zhao Y.L., Zhang L.H., Feng G.Q., Zhang B.N., Kang B. (2016) Performance analysis of fractured wells with stimulated reservoir volume in coal seam reservoirs, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 71, 8. [CrossRef] [Google Scholar]
  • Li Z.L., Ren Q.W., Wang Y.H. (2005) Formula for water pressure distribution in rock or concrete fractures formed by hydraulic fracturing, J. Hydraul. Eng. 36, 656–661. [Google Scholar]
  • Guo W., Yu R.Z., Zhang X.W., Hu Z.M. (2018) Physical and mathematical modeling of gas production in shale matrix, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 73, 12. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.