- Al-Lawati S., Saleh S. (1996) Oil recovery in fractured oil reservoirs by low IFT imbibition process. SPE Annual Technical Conference and Exhibition, http://dx.doi.org/10.2118/36688-ms [Google Scholar]
- Alyafei N., Al-Menhali A., Blunt M. (2016) Experimental and analytical investigation of spontaneous imbibition in water-wet carbonates, Transp. Porous Media 115, 1, 189–207. http://dx.doi.org/10.1007/s11242-016-0761-4 [Google Scholar]
- Anderson W. (1986) Wettability literature survey – Part 2: wettability measurement, J. Pet. Technol. 38, 11, 1246–1262. http://dx.doi.org/10.2118/13933-pa [Google Scholar]
- Bourbiaux B., Kalaydjian F. (1990) Experimental study of cocurrent and countercurrent flows in natural porous media, SPE Reserv. Eng. 5, 3, 361–368. http://dx.doi.org/10.2118/18283-pa [CrossRef] [Google Scholar]
- Cil M., Reis J., Miller M., Misra D. (1998) An examination of countercurrent capillary imbibition recovery from single matrix blocks and recovery predictions by analytical matrix/fracture transfer functions. SPE Annual Technical Conference and Exhibition. http://dx.doi.org/10.2118/49005-ms . [Google Scholar]
- Cuiec L., Bourbiaux B., Kalaydjian F. (1994) Oil recovery by imbibition in low-permeability chalk, SPE Form. Eval. 9, 3, 200–208. http://dx.doi.org/10.2118/20259-pa [CrossRef] [Google Scholar]
- Du Prey E. (1978) Gravity and capillarity effects on imbibition in porous media, SPE J 18, 3, 195–206. http://dx.doi.org/10.2118/6192-pa [Google Scholar]
- Fischer H., Wo S., Morrow N. (2006) Modeling the Effect of Viscosity Ratio on Spontaneous Imbibition, SPE Reservoir Evaluation & Engineering 11, 3, 577–589. http://dx.doi.org/10.2118/102641-pa [CrossRef] [Google Scholar]
- Ge H., Yang L., Shen Y., Ren K., Meng F., Ji W., Wu S. (2015) Experimental investigation of shale imbibition capacity and the factors influencing loss of hydraulic fracturing fluids, Petrol. Sci. 12, 4, 636–650. http://dx.doi.org/10.1007/s12182-015-0049-2 [CrossRef] [Google Scholar]
- Hamon G., Vidal J. (1986) Scaling-up the capillary imbibition process from laboratory experiments on homogeneous and heterogeneous samples. European Petroleum Conference. http://dx.doi.org/10.2118/15852-ms [Google Scholar]
- Hatiboglu C., Babadagli T. (2007) Oil recovery by counter-current spontaneous imbibition: Effects of matrix shape factor, gravity, IFT, oil viscosity, wettability, and rock type, J. Petrol. Sci. Eng. 59, 1-2, 106–122. http://dx.doi.org/10.1016/j.petrol.2007.03.005 [CrossRef] [Google Scholar]
- Iffly R., Rousselet D., Vermeulen J. (1972) Fundamental study of imbibition in fissured oil fields. Fall Meeting of the Society of Petroleum Engineers of AIME. http://dx.doi.org/10.2118/4102-ms [Google Scholar]
- Kazemi H., Gilman J., Elsharkawy A. (1992) Analytical and numerical solution of oil recovery from fractured reservoirs with empirical transfer functions (includes associated Papers 25528 and 25818), SPE Reserv. Eng. 7, 2, 219–227. http://dx.doi.org/10.2118/19849-pa [CrossRef] [Google Scholar]
- Li K., Horne R. (2004) An analytical scaling method for spontaneous imbibition in gas/water/rock systems, SPE J. 9, 3, 322–329. http://dx.doi.org/10.2118/88996-pa [CrossRef] [Google Scholar]
- Li K., Horne R. (2006) Generalized scaling approach for spontaneous imbibition: An analytical model, SPE Reserv. Evalu. Eng. 9, 3, 251–258. http://dx.doi.org/10.2118/77544-pa [CrossRef] [Google Scholar]
- Lucas R. (1918) Ueber das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten, Kolloid-Zeitschrift 23, 1, 15–22. http://dx.doi.org/10.1007/bf01461107 [CrossRef] [Google Scholar]
- Mao H., Qiu Z., Shen Z., Huang W. (2015) Hydrophobic associated polymer based silica nanoparticles composite with core-shell structure as a filtrate reducer for drilling fluid at utra-high temperature, Journal Of Petroleum Science And Engineering 129, 1–14. http://dx.doi.org/10.1016/j.petrol.2015.03.003 [CrossRef] [Google Scholar]
- Ma S., Morrow N. R., Zhang X. (1997) Generalized scaling of spontaneous imbibition data for strongly water-wet systems, J. Petrol. Sci. Eng. 18, 3-4, 165–178. [Google Scholar]
- Mattax C., Kyte J. (1962) Imbibition oil recovery from fractured, water-drive reservoir, SPE J. 2, 2, 177–184. http://dx.doi.org/10.2118/187-pa [Google Scholar]
- McLean K., Wu S., McAuley K. (2012) Mean-squared-error methods for selecting optimal parameter subsets for estimation, Ind. Eng. Chem. Res. 51, 17, 6105–6115. http://dx.doi.org/10.1021/ie202352f [Google Scholar]
- McWhorter D., Sunada D. (1990) Exact integral solutions for two-phase flow, Water Resour. Res. 26, 3, 399–413. http://dx.doi.org/10.1029/wr026i003p00399 [Google Scholar]
- McWhorter D., Sunada D. (1992) Reply [to “Comment on ‘Exact integral solutions for two-phase flow’ by David B. McWhorter and Daniel K. Sunada”], Water Resour. Res. 28, 5, 1479–1479. http://dx.doi.org/10.1029/92wr00474 [Google Scholar]
- Meng Q., Liu H., Wang J., Zhang H. (2016) Effect of wetting-phase viscosity on cocurrent spontaneous imbibition. Energy Fuels 30, 835–843, http://dx.doi.org/10.1021/acs.energyfuels.5b02321 [Google Scholar]
- Morrow N., Mason G. (2001) Recovery of oil by spontaneous imbibition, Curr. Opin. Colloid Interface Sci. 6, 4, 321–337. http://dx.doi.org/10.1016/s1359-0294(01)00100-5 [Google Scholar]
- Nooruddin H., Blunt M. (2016) Analytical and numerical investigations of spontaneous imbibition in porous media, Water Resour. Res. 52, 9, 7284–7310. http://dx.doi.org/10.1002/2015wr018451 [Google Scholar]
- Parsons R., Chaney P. (1966) Imbibition model studies on water-wet carbonate rocks, SPE J. 6, 1, 26–34. http://dx.doi.org/10.2118/1091-pa [Google Scholar]
- Pooladi-Darvish M., Firoozabadi A. (2000) Cocurrent and Countercurrent Imbibition in a Water-Wet Matrix Block, SPE J. 5, 1, 3–11. http://dx.doi.org/10.2118/38443-pa [CrossRef] [Google Scholar]
- Rangel-German E., Kovscek A. (2002) Experimental and analytical study of multidimensional imbibition in fractured porous media, J. Petrol. Sci. Eng. 36, 1–2, 45–60. http://dx.doi.org/10.1016/s0920-4105(02)00250-4 [CrossRef] [Google Scholar]
- Rapoport L.A. (1955) Scaling laws for use in design and operation of water-oil flow models, Trans. AIME 204, 143–150. [Google Scholar]
- Reis J., Cil M. (1993) A model for oil expulsion by counter-current water imbibition in rocks: One-dimensional geometry, J. Petrol. Sci. Eng. 10, 2, 97–107. http://dx.doi.org/10.1016/0920-4105(93)90034-c [CrossRef] [Google Scholar]
- Schmid K., Geiger S. (2012) Universal scaling of spontaneous imbibition for water-wet systems, Water Resour. Res. 48, 3, W03507 . http://dx.doi.org/10.1029/2011wr011566 [Google Scholar]
- Schmid K., Geiger S., Sorbie K. (2011) Semianalytical solutions for cocurrent and countercurrent imbibition and dispersion of solutes in immiscible two-phase flow, Water Resour. Res. 47, 2. http://dx.doi.org/10.1029/2010wr009686 [CrossRef] [PubMed] [Google Scholar]
- Schmid K., Alyafei N., Geiger S., Blunt M. (2016) Analytical solutions for spontaneous imbibition: Fractional-flow theory and experimental analysis, SPE J. 21, 6, 2308–2316. http://dx.doi.org/10.2118/184393-pa [CrossRef] [Google Scholar]
- Standnes D. (2010) Scaling group for spontaneous imbibition including gravity, Energy Fuels 24, 5, 2980–2984. http://dx.doi.org/10.1021/ef901563p [Google Scholar]
- Washburn E. (1921) The dynamics of capillary flow, Phys. Rev. 17, 3, 273–283. http://dx.doi.org/10.1103/physrev.17.273 [Google Scholar]
- Yildiz H., Gokmen M., Cesur Y. (2006) Effect of shape factor, characteristic length, and boundary conditions on spontaneous imbibition, J. Petrol. Sci. Eng. 53, 3–4, 158–170. http://dx.doi.org/10.1016/j.petrol.2006.06.002 [CrossRef] [Google Scholar]
- Zhang X., Morrow N., Ma S. (1996) Experimental verification of a modified scaling group for spontaneous imbibition, SPE Reserv. Eng. 11, 4, 280–285. http://dx.doi.org/10.2118/30762-pa [CrossRef] [Google Scholar]
- Zhou D., Jia L., Kamath J., Kovscek A. (2002) Scaling of counter-current imbibition processes in low-permeability porous media, J. Petrol. Sci. Eng. 33, 1–3, 61–74. http://dx.doi.org/10.1016/s0920-4105(01)00176-0 [CrossRef] [Google Scholar]
Open Access
Numéro |
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
|
|
---|---|---|
Numéro d'article | 71 | |
Nombre de pages | 15 | |
DOI | https://doi.org/10.2516/ogst/2018060 | |
Publié en ligne | 10 décembre 2018 |
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.