Open Access
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Numéro d'article 7
Nombre de pages 9
Publié en ligne 20 mars 2018
  • Rahmanian N., Ilias I., Nasrifar Kh. (2015) Process simulation and assessment of a back-up condensate stabilization unit, J. Nat. Gas Sci. Eng. 26, 730-736. [CrossRef] [Google Scholar]
  • Rahmanian N., Bt. Jusoh L.S., Homayoonfard M., Moshfgheian M., Nasrifar Kh. (2016) Simulation and optimization of a condensate stabilization process, J. Nat. Gas Sci. Eng. 32, 453-464. [Google Scholar]
  • Burlutskiy E. (2014) Numerical analysis of phase behavior during rapid decompression of rich natural gases, Process Saf. Environ. 92, 555-564. [CrossRef] [Google Scholar]
  • Nasrifar Kh., Bolland O., Moshfeghian M. (2005) Predicting natural gas dew points from 15 equations of state, Energy Fuels 19, 561-572. [CrossRef] [Google Scholar]
  • Moshfeghian M., Lilly L.L., Maddox R.N., Nasrifar Kh. (2005) Study compares C6+ characterization methods for natural gas phase envelopes, Oil Gas J. 103, 60-65. [Google Scholar]
  • Michelsen M.L. (1980) Calculation of phase envelopes and critical points for multicomponent mixtures, Fluid Phase Equilib. 4, 1-10. [CrossRef] [Google Scholar]
  • Danesh A. (1998) PVT and phase behavior of petroleum reservoir fluids, Elsevier Science B.V., Amsterdam, The Netherlands. [Google Scholar]
  • Twu C.H. (1984) An internally consistent correlation for predicting the critical properties and molecular weights of petroleum and coal-tar liquids, Fluid Phase Equilib. 16, 137-150. [CrossRef] [Google Scholar]
  • Riazi M.R., Daubert T.E. (1987) Characterization parameters for petroleum fractions, Ind. Eng. Chem. Res. 26, 755-759. [CrossRef] [Google Scholar]
  • Kumar A., Okuno R. (2013) Characterization of reservoir fluids using an EoS based on perturbation from n-alkanes, Fluid Phase Equilib. 358, 250-271. [CrossRef] [Google Scholar]
  • Atilhan M., Aparicio S., Ejaz S., Zhou J., Al-Marri M., Holste J.J., Hall K.R. (2015) Thermodynamic characterization of deep water natural gas mixtures with heavy hydrocarbon content at high pressures, J. Chem. Thermodyn. 82, 134-142. [CrossRef] [Google Scholar]
  • Varzandeh F., Stenby E.H., Yan W. (2017) General approach to characterizing reservoir fluids for EoS models using a large PVT database, Fluid Phase Equilib. 434, 21-43. [CrossRef] [Google Scholar]
  • Alfradique M.F., Castier M. (2007) Calculation of phase equilibrium of natural gases with the Peng-Robinson and PC-SAFT equations of state, Oil Gas Sci. Technol.− Rev. IFP 62, 707-714. [CrossRef] [Google Scholar]
  • Nichita D.V., Petitfrere M. (2015) Phase equilibrium calculations with quasi Newton methods, Fluid Phase Equilib. 406, 194-208. [CrossRef] [Google Scholar]
  • Nichita D.V. (2008) Phase envelope construction for mixtures with many components, Energy Fuels 22, 488-495. [CrossRef] [Google Scholar]
  • Petitfrere M., Nichita D.V. (2015) Multiphase equilibrium calculation using a reduction method, Fluid Phase Equilib. 401, 110-126. [CrossRef] [Google Scholar]
  • Venkatarathnam G. (2014) Density Marching method for calculating phase envelopes, Ind. Eng. Chem. Res. 53, 3723-3730. [CrossRef] [Google Scholar]
  • Venkatarathnam G. (2014) Density Marching method for calculating phase envelopes. 2. Three-phase envelopes, Ind. Eng. Chem. Res. 53, 12122-12128. [CrossRef] [Google Scholar]
  • van der Waals J.D. (1873) On the continuity of gaseous and liquid states, PhD Thesis, Leiden University, Leiden, The Netherlands. [Google Scholar]
  • Gernert J., Jäger A., Span R. (2014) Calculation of phase equilibria for multi-component mixtures using highly accurate Helmholtz energy equations, Fluid Phase Equilib. 375, 209-218. [CrossRef] [Google Scholar]
  • Kunz O., Wagner W. (2012) The GERG-2008 wide-range equation of state for natural gases and other mixtures: An expansion of GERG-2004, J. Chem. Eng. Data 57, 3032-3091. [Google Scholar]
  • Varzandeh F., Stenby E.H., Yan W. (2017) Comparison of GERG-2008 and simpler EoS models in calculation of phase equilibrium and physical properties of natural gas related systems, Fluid Phase Equilib. 434, 21-43. [CrossRef] [Google Scholar]
  • Yan W., Varzandeh F., Stenby E.H. (2015) PVT modeling of reservoir fluids using PC-SAFT EoS and Soave-BWR EoS, Fluid Phase Equilib. 386, 96-124. [CrossRef] [Google Scholar]
  • Mohsen-Nia M., Modarress H., Mansoori G.A. (2003) A cubic hard-core equation of state, Fluid Phase Equilib. 206, 27-39. [CrossRef] [Google Scholar]
  • Cismondi M., Mollerup J. (2005) Development and application of a three-parameter RK-PR equation of state, Fluid Phase Equilib. 232, 74-89. [CrossRef] [Google Scholar]
  • Peng D.Y., Robinson D.B. (1976) A new two-constant equation of state, Ind. Eng. Chem. Fundam. 15, 59-64. [CrossRef] [Google Scholar]
  • Soave G. (1972) Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci. 27, 1197-1203. [CrossRef] [Google Scholar]
  • Holderbaum T., Gmehling J. (1991) PSRK: A group contribution equation of state based on UNIFAC, Fluid Phase Equilib. 70, 251-265. [CrossRef] [Google Scholar]
  • Schmid B., Gmehling J. (2011) The universal group contribution equation of state − present status and potential for process development, Fluid Phase Equilib. 302, 213-219. [CrossRef] [Google Scholar]
  • Voutsas E., Magoulous K., Tassios D. (2004) Universal mixing rule for cubic equations of state applicable to symmetric and asymmetric systems: Results with the Peng−Robinson equation of state, Ind. Eng. Chem. Res. 43, 6238-6246. [CrossRef] [Google Scholar]
  • Jaubert J.-N., Mutelet F. (2004) VLE predictions with the Peng-Robinson equation of state and temperature dependent kij calculated through a group contribution method, Fluid Phase Equilib. 224, 285-304. [CrossRef] [Google Scholar]
  • Jaubert J.-N., Vitu S., Mutelet F., Corriou J.-P. (2005) Extension of the PPR78 model (predictive 1978, Peng–Robinson EOS with temperature dependent kij calculated through a group contribution method) to systems containing aromatic compounds, Fluid Phase Equilib. 237, 193-211. [CrossRef] [Google Scholar]
  • Mutelet F., Vitu S., Privat R., Jaubert J.-N. (2005) Solubility of CO2 in branched alkanesin order to extend the PPR78 model (Predictive 1978, Peng-Robinson EOS with temperature-dependent kij calculated through a group contribution method) to such systems, Fluid Phase Equilib. 238, 157-168. [CrossRef] [Google Scholar]
  • Vitu S., Jaubert J.- N., Mutelet F. (2006) Extension of the PPR78 model (predictive 1978, Peng–Robinson EOS with temperature dependent kij calculated through a group contribution method) to systems containing naphthenic compounds, Fluid Phase Equilib. 243, 9-28. [CrossRef] [Google Scholar]
  • Privat R., Jaubert J.-N., Mutelet F. (2008) Addition of the sulfhydryl group (SH) to the PPR78 model (predictive 1978, Peng–Robinson EOS with temperature dependent kij calculated through a group contribution method), J. Chem. Thermodyn. 40, 1331-1341. [CrossRef] [Google Scholar]
  • Jaubert J.-N., Privat R. (2010) Relationship between the binary interaction parameters (kij) of the Peng-Robinson and those of the Soave-Redlich-Kwong equations of state: Application to the definition of the PR2SRK model, Fluid Phase Equilib. 295, 26-37. [CrossRef] [Google Scholar]
  • Jaubert J.-N., Privat R., Mutelet F. (2010) Predicting the phase equilibria of synthetic petroleum fluids with the PPR78 approach, AIChE J. 56, 3225-3235. [CrossRef] [Google Scholar]
  • Robinson D.B., Peng D.Y. (1978) The Characterization of the Heptanes and Heavier Fractions for the GPA Peng-Robinson Program's, GPA Research Report, Tulsa. [Google Scholar]
  • Gaganis V. (2013) Reduced flash calculations with temperature dependent binary interaction coefficients, Fluid Phase Equilib. 354, 166-176. [CrossRef] [Google Scholar]
  • Jaubert J.-N., Privat R. (2010) Comments on application of predictive equations of state in calculating natural gas phase envelopes and critical points, J. Nat. Gas Sci. Eng. 2, 150-151. [CrossRef] [Google Scholar]
  • Nasrifar Kh., Moshfeghian M. (2014) Vapor-liquid equilibria of binary associating fluids using a cubic equation of state with limited data, Ind. Eng. Chem. Res. 53, 2052-2061. [CrossRef] [Google Scholar]
  • Nasrifar Kh., Rahmanian N. (2014) High pressure solubility of light gases in heavy n-alkanes from a predictive equation of state: Incorporating Henry's law constant into binary interaction parameter, Fluid Phase Equilib. 381, 95-101. [CrossRef] [Google Scholar]
  • Khoshnamvand Y., Assareh M., Davoudi B.M. (2017) Phase behavior modeling for gas condensate fluids with PC-SAFT and an improved binary interaction coefficient model, Fluid Phase Equilib. 444, 37-46. [CrossRef] [Google Scholar]
  • Qian J.-W., Privat R., Jaubert J.-N. (2013) Predicting the Phase Equilibria, Critical phenomena, and mixing enthalpies of binary aqueous systems containing alkanes, cycloalkanes, aromatics, alkenes, and gases (N2, CO2, H2S, H2), with the PPR78 equation of state, Ind. Eng. Chem. Res. 52, 16457-16490. [CrossRef] [Google Scholar]
  • Shariati A., Straver E.J.M., Florusse L.J., Peters C.J. (2014) Experimental phase behavior study of a five-component model gas condensate, Fluid Phase Equilib. 362, 147-150. [CrossRef] [Google Scholar]
  • Skylogianni E., Novak N., Louli V., Pappa G., Boukouvalas C., Skouras S., Solbraa E., Voutsas E. (2016) Measurement and prediction of dew points of six natural gases, Fluid Phase Equilib. 424, 8-15. [CrossRef] [Google Scholar]
  • Mørch Ø., Nasrifar Kh., Bolland O., Solbraa E., Fredheim A.O., Gjertsen L.H. (2006) Measurement and modeling of hydrocarbon dew points for 5 synthetic natural gas mixtures, Fluid Phase Equilib. 239, 135-145. [Google Scholar]
  • Chueh P.L., Prausnitz J.M. (1967) Vapor-liquid equilibria at high pressures: Calculation of critical temperatures, volumes, and pressures of nonpolar mixtures, AIChE J. 13, 1099-1113. [CrossRef] [Google Scholar]
  • Nasrifar Kh., Bolland O. (2006) Prediction of thermodynamic properties of natural gas mixtures using ten equations of state including a new cubic two-constant equation of state, J. Pet. Sci. Eng. 51, 253-266. [CrossRef] [Google Scholar]
  • Nasrifar Kh., Bolland O. (2004) Square-well potential and a new α function for the Soave-Redlich-Kwong equation of state, Ind. Eng. Chem. Res. 43, 6901-6909. [CrossRef] [Google Scholar]
  • Plee V., Jaubert J.-N., Privat R., Arpentinier P. (2015) Extension of the E-PPR78 equation of state to predict fluid phase equilibria of natural gases containing carbon monoxide, helium-4 and argon, J. Pet. Sci. Eng. 133, 744-770. [CrossRef] [Google Scholar]
  • Michelsen M.L., Mollerup J. (1986) Partial derivatives of thermodynamic properties, AIChE 32, 1389-1392. [CrossRef] [Google Scholar]
  • Zhou J. (2005) Automatic isochoric apparatus for PVT and phase equilibrium studies of natural gas mixtures, PhD Thesis, Texas A&M University, Texas, US. [Google Scholar]
  • Whitson C.H. (1983) Characterizing hydrocarbon plus fractions, SPE J. 23, 683-694. [Google Scholar]
  • Edmister W.C. (1958) Applied hydrocarbon thermodynamics, Part 4: Compressibility factors and equations of state, Pet. Refin. 37, 173-179. [Google Scholar]
  • Pedersen K.S., Blilie A.L., Meisingset K.K. (1992) PVT calculations on petroleum reservoir fluids using measured and estimated compositional data for plus fraction, Ind. Eng. Chem. Res. 3, 1378-1384. [CrossRef] [Google Scholar]
  • Sage B.H., Olds R.H. (1947) Volumetric behavior of oil and gas from several San Joaquin Valley fields, T. Soc. Petrol. En. AIME 170, 156-173. [Google Scholar]
  • Reamer H.H., Sage B.H. (1950) Volumetric behavior of oil and gas from Louisiana field, T. Soc. Petrol. En. AIME 189, 261-268. [Google Scholar]
  • Pedersen K.S., Thomassen P., Fredenslund A. (1988) Characterization of gas condensate mixtures, in: Proceedings of the AIChE Spring National Meeting, New Oreleans, LA. [Google Scholar]
  • Hoffmann A.E., Crump J.S., Hocott C.R. (1953) Equilibrium constants for a gas condensate system, T. Soc. Petrol. En. AIME 198, 1-10. [Google Scholar]
  • Donohue C.W., Buchanan R.D. (1981) Economic evaluation of cycling gas-condensate reservoirs with nitrogen, J. Petrol. Technol. 35, 263-270. [CrossRef] [Google Scholar]
  • Firoozabadi A., Hekim Y., Katz D.L. (1978) Reservoir depletion calculations for gas condensate using extended analysis in the Peng Robinson equation of state, Can. J. Chem. Eng. 56, 610-615. [CrossRef] [Google Scholar]
  • Coats K.H., Smart G.T. (1986) Application of a regression-based EOS PVT program to laboratory data, SPE Reserv. Eng. 227-299. [Google Scholar]
  • Elsharkawy A.M. (2002) Predicting the dew point pressure for gas condensate reservoirs: empirical models and equations of state, Fluid Phase Equilib. 193, 147-165. [CrossRef] [Google Scholar]
  • Xu X., Jaubert J.-N., Privat R., Duchet-Suchaux P., Braña-Mulero F. (2015) Predicting binary-interaction parameters of cubic equations of state for petroleum fluids containing pseudo-components, Ind. Eng. Chem. Res. 54, 2816-2824. [CrossRef] [Google Scholar]
  • Nasrifar Kh., Moshfeghian M. (2012) Multiphase equilibria of waxy systems with predictive equations of state and a solid solution model, Fluid Phase Equilib. 314, 60-68. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.