Dossier: Dynamics of Evolving Fluid Interfaces - DEFI Gathering Physico-Chemical and Flow Properties
Open Access
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Dossier: Dynamics of Evolving Fluid Interfaces - DEFI Gathering Physico-Chemical and Flow Properties
Numéro d'article 6
Nombre de pages 36
Publié en ligne 20 mars 2018
  • Al-Gharbi M.S., Blunt M.J. (2005) Dynamic network modeling of two-phase drainage in porous media, Phys. − Rev. E 71, 016308, doi: 10.1103/PhysRevE.71.016308. [CrossRef] [Google Scholar]
  • Alvarado V., Manrique E. (2010) Enhanced oil recovery: an update review, Energies 3, 1529–1575, doi: 10.3390/en3091529. [CrossRef] [Google Scholar]
  • Armstrong R.T., McClure J.E., Berrill M.A., Rücker M., Schlüter S., Berg S. (2016) Beyond Darcy's law: The role of phase topology and ganglion dynamics for two-fluid flow, Phys. − Rev. E 94, 043113, doi: 10.1103/PhysRevE.94.043113. [CrossRef] [PubMed] [Google Scholar]
  • Avraam D.G., Kolonis G.B., Roumeliotis T.C., Constantinides G.N., Payatakes A.C. (1994) Steady-state two-phase flow through planar and nonplanar model porous media, Transp. Porous Media. 16, 75–101. [CrossRef] [Google Scholar]
  • Avraam D.G., Payatakes A.C. (1995) Flow regimes and relative permeabilities during steady-state two-phase flow in porous media, J. Fluid Mech. 293, 207–236. [Google Scholar]
  • Αvraam D.G., Payatakes A.C. (1999) Flow mechanisms, relative permeabilities and coupling effects in steady-state two-phase flow in porous media case of strong wettability, Ind. Eng. Chem. Research 38, 778–786. [Google Scholar]
  • Bazylak A., Berejnov V., Markicevic B., Sinton D., Djilali N. (2008) Numerical and microfluidic pore networks: Towards designs for directed water transport in GDLs, Electrochimica Acta 53, 7630–7637, doi:10.1016/j.electacta.2008.03.078. [CrossRef] [Google Scholar]
  • Berg S., Holger O., Klapp S.A., Schwing A., Neiteler R., Niels Brussee N., Makurat A., Leu L., Enzmann F., Schwarz J-O., Kersten M., Irvine S., Stampanoni M. (2013) Real-time 3D imaging of Haines jumps in porous media flow, Proc. Nat. Academy Sci. 110, 10, 3755–3759, [CrossRef] [Google Scholar]
  • Cobos S., Carvalho M.S., Alvarado V. (2009) Flow of oil–water emulsions through a constricted capillary, Int. J. Multiph. Flow 35, 507–515, doi: 10.1016/j.ijmultiphaseflow.2009.02.018. [Google Scholar]
  • Constantinides G.N., Payatakes A. C. (1996) Network simulation of steady-state two-phase flow in consolidated porous media, AIChE J. 42, 369–382, doi: 10.1002/aic.690420207. [Google Scholar]
  • Constantinides G.N., Payatakes A.C. (2000) Effects of precursorwetting films in immiscible displacement through porous media, Transp. Porous Media 38, 291–317, doi: 10.1023/A:1006557114996. [CrossRef] [Google Scholar]
  • Datta S.S., Ramakrishnan T.S., Weitz D.A. (2014) Mobilization of a trapped non-wetting fluid from a threedimensional porous medium, Phys. Fluids 26, doi: 10.1063/1.4866641. [Google Scholar]
  • Fusseis F., Xiao X., Schrank C., De Carlo F. (2014) A brief guide to synchrotron radiation-based microtomography in (structural) geology and rock mechanics, J. Struct. Geol. 65, 1–16, doi:10.1016/j.jsg.2014.02.005. [CrossRef] [Google Scholar]
  • Georgiadis A., Berg S., Makurat A., Maitland G., Ott H. (2013) Pore-scale microcomputed-tomography imaging: Nonwetting-phase cluster-size distribution during drainage and imbibitions, Phys. − Rev. E 88, 033002, doi: 10.1103/PhysRevE.88.033002. [CrossRef] [Google Scholar]
  • Ghassemi A., Pak A. (2011) Numerical study of factors influencing relative permeabilities of two immiscible fluids flowing through porous media using lattice Botzmann method, J. Pet. Sci. Eng. 77, 135–145, doi: 10.1016/j.petrol.2011.02.007. [CrossRef] [Google Scholar]
  • Guillen V-R, Romero M-I, Marcio da Silveira Carvalho M-S, Alvarado V. (2012) Capillary-driven mobility control in macro emulsion flow in porous media, Int. J. Multiph. Flow 43, 62–65, doi: 10.1016/j.ijmultiphaseflow.2012.03.001. [Google Scholar]
  • Kirkpatrick S. (1973) Percolation and conduction, Rev. Mod. Phys. 45, 4, 574–588, doi: 10.1103/RevModPhys.45.574. [CrossRef] [Google Scholar]
  • Kjarstad J., Johnsson F. (2009) Resources and future supply of oil, Energy Policy 37, 441–464, doi: 10.1016/j.enpol.2008.09.056. [CrossRef] [Google Scholar]
  • Knudsen H.A., Aker E., Hansen A. (2002) Bulk flow regimes and fractional flow in 2d porous media by numerical simulations, Transp. Porous Media 47, 99–121, doi: 10.1023/A:1015039503551. [CrossRef] [Google Scholar]
  • Knudsen H.A., Hansen A. (2002) Relation between pressure and fractional flow in two-phase flow in porous media, Phys. Rev. E 65, 056310-1–056310-10, doi: 10.1103/PhysRevE.65.056310. [CrossRef] [Google Scholar]
  • Krummel A.T., Datta S.S., Münster S., Weitz D.A. (2013) Visualizing multiphase flow and trapped fluid configurations in a model three-dimensional porous medium, AIChE J. 59, 1022–1029, doi: 10.1002/aic.14005. [CrossRef] [Google Scholar]
  • Nguyen V.H., Sheppard A.P., Knackstedt M. A., Pinczewski W. (2006) The effect of displacement rate on imbibition relative permeability and residual saturation, J. Petrol. Sci. Eng. 52, 54–70, doi: 10.1016/j.petrol.2006.03.020 [CrossRef] [Google Scholar]
  • Oughanem R., Youssef S., Bauer D., Peysson Y., Maire E., Vizika O. (2015) A multi-scale investigation of pore structure impact on the mobilization of trapped oil by surfactant injection, Transp. Porous Media 109, 673–692. [CrossRef] [Google Scholar]
  • Pan C., Hilpert M., Miller C.T. (2004) Lattice-Boltzmann simulation of two-phase flow in porous media, Water Resour. Res. 40, W01501. [Google Scholar]
  • Payatakes A.C. (1982) Dynamics of oil ganglia during immiscible displacement in water-wet porous media, Ann. Rev. Fluid Mech. 14, 365–393. [CrossRef] [Google Scholar]
  • Ramstad T., Idowu N., Nardi. C., Øren P-E. (2012) Relative permeability calculations from two-phase flow simulations directly on digital images of porous rocks, Transp Porous Med 94, 487–504. [Google Scholar]
  • Rücker M., Berg S., Armstrong R.T., Georgiadis A., Ott H., Schwing A., Neiteler R., Brussee N., Makurat A., Leu L., Wolf M., Khan F., Enzmann F., Kersten M. (2015) From connected pathway flow to ganglion dynamics, Geophys. Res. Lett. 42, 3888–3894. [CrossRef] [Google Scholar]
  • Ryoo S., Rahmani A.R., Yoon K.Y., Prodanovic M., Kotsmar C., Milner T.E., Johnston K.P., Bryant S.L., Huh C. (2010) Theoretical and experimental investigation of the motion of multiphase fluids containing paramagnetic nanoparticles in porous media, Paper SPE134879 presented at the SPE Annual Technical Conference and Exhibition, 19–22 September, Florence, Italy, 20p. [Google Scholar]
  • Sahloul N.A., Ioannidis M.A., Chatzis I. (2002) Dissolution of residual non-aqueous phase liquids in porous media: pore-scale mechanisms and mass transfer rates, Adv. Water Resour. 25, 1, 33–49, doi: 10.1016/S0309-1708(01)00025-2. [CrossRef] [Google Scholar]
  • Serres-Piole C., Preud'homme H., Moradi-Tehrani N., Allanic C., Jullia H. Lobinski R. (2012) Water tracers in oilfield applications: Guidelines, J. Pet. Sci. Eng. 98-99, 22–39, doi: 10.1016/j.petrol.2012.08.009. [CrossRef] [Google Scholar]
  • Sinha S., Hansen A. (2012) Effective rheology of immiscible two-phase flow in porous media, Europhysics Lett. 99, 4, 1–6, doi: 10.1209/0295-5075/99/44004. [Google Scholar]
  • Sinha S. Bender A.T., Danczyk M., Keepseagle K., Prather C.A., Bray J.M., Thrane L.W., Seymour J.D., Codd S.I., Hansen A. (2017) Effective rheology of two-phase flow in three-dimensional porous media: experiment and simulation, Transp. Porous Media, doi: 10.1007/s11242-017-0874-4. [PubMed] [Google Scholar]
  • Taber J.J., Martin F.D., Seright R.S. (1997) EOR screening criteria revisited − part1: Introduction to screening criteria and enhanced recovery field projects, SPE Reserv. Eng. 189–198 SPE35385. [Google Scholar]
  • Taber J.J., Martin F.D., Seright R.S. (1997) EOR screening criteria revisited − part2: Applications and impact of oil prices, SPE Reserv. Eng. 199–205 SPE39234. [CrossRef] [Google Scholar]
  • Tallakstad K.T., Knudsen H.A., Ramstad T., Løvoll G., Maløy K.J., Toussaint R., Flekkøy E.G. (2009) Steady-state two-phase flow in porous media: statistics and transport properties, Phys. Review Lett. 102, 074502, 1–4, doi: 10.1103/PhysRevLett.102.074502. [Google Scholar]
  • Tsakiroglou C.D., Avraam D.G., Payatakes A.C. (2007) Transient and steady-state relative permeabilities from two-phase flow experiments in planar pore networks, Adv. Water Resour. 30, 1981–1992, doi: 10.1016/j.advwatres.2007.04.002. [Google Scholar]
  • Tsakiroglou C.D., Aggelopoulos C.A., Terzi K., Avraam D.G., Valavanides M.S. (2015) Steady-state two-phase relative permeability functions of porous media: A revisit, Int. J. Multiph. Flow 73, 34–42, doi: 10.1016/j.ijmultiphaseflow.2015.03.001. [CrossRef] [Google Scholar]
  • Tzimas G.C., Matsuura T., Avraam D.G., van der Brugghen W., Constantinides G.N., Payatakes, A.C. (1997) The combined effect of the viscosity ratio and the wettability during forced imbibition through nonplanar porous media, J. Colloid Interface Sci. 189, 27–36, doi: 10.1006/jcis.1996.4658. [CrossRef] [Google Scholar]
  • Valavanides M.S. (1998) Macroscopic theory of two-phase flow in porous media based on integration of pore scale phenomena, PhD Dissertation, University of Patras, National Archive of PhD Theses − National Documentation Center, doi: 10.12681/eadd/11044. [Google Scholar]
  • Valavanides M.S., Constantinides G.N., Payatakes A.C. (1998) Mechanistic model of steady-state two-phase flow in porous media based on ganglion dynamics, Transp. Porous Media 30, 267–299, doi: 10.1023/A:1006558121674. [CrossRef] [Google Scholar]
  • Valavanides M.S., Payatakes A.C. (2000) A true-to-mechanism model of steady-state two-phase flow in porous media, including the contribution of the motion of ganglia and droplets, in: Bentley L.R. et al. (eds.), Computational Methods in Water Resources XIII, 1, ISBN 9058091236, A.A. Balkema, Rotterdam, The Netherlands, pp. 239–243. [Google Scholar]
  • Valavanides M.S., Payatakes A.C. (2001) True-to-mechanism model of steady-state two-phase flow in porous media using decomposition into prototype flows, Adv. Water Resour. 24, 3–4, 385–407. [CrossRef] [Google Scholar]
  • Valavanides M.S., Payatakes A.C. (2002) Effects of Pore Network Characteristics on Steady-State Two-Phase Flow Based on a True-to-Mechanism Model (DeProF), SPE-78516-MS, 10th ADIPEC Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, United Arab Emirates, October 13–16, pp. 379–387, [Google Scholar]
  • Valavanides M.S., Payatakes A.C. (2003) Prediction of optimum operating conditions for steady-state two-phase flow in pore network systems using the DeProF true-to-mechanism theoretical model, SCA2003-18, 2003 Int. Symp. Soc. Core Anal., Pau, France, 21–25 September. [Google Scholar]
  • Valavanides M.S., Payatakes A.C. (2004) Wetting Film Effects on Steady-State Two-Phase Flow in Pore Networks using the DeProF Theoretical Model, SPE-88713-MS, 11th ADIPEC Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, United Arab Emirates, October 10–13, [Google Scholar]
  • Valavanides M.S. (2012) Steady-state two-phase flow in porous media: review of progress in the development of the DeProF theory bridging pore − to statistical thermodynamics − scales, Oil Gas Sci. Technol. 67, 5, 787–804, doi: 10.2516/ogst/2012056. [Google Scholar]
  • Valavanides M.S. (2014) Operational efficiency map and flow characterization for steady-state two-phase flows in porous media, Soc. Core Anal. Symp. − SCA2014, Avignon, France, Sept. 8-14, [Google Scholar]
  • Valavanides M.S. (2018) Review of steady state two-phase flow in porous media: independent variables, universal energy efficiency map, critical flow conditions, effective characterization of flow and pore network. Transp. in Porous Media on-line, 1-55, doi: 10.1007/s11242-018-1026-1]. [Google Scholar]
  • Valavanides M.S., Daras T. (2016) Definition and counting of configurational microstates in steady-state two-phase flows in pore networks, Entropy 18, 054, 1–28, doi: 10.3390/e18020054. [CrossRef] [Google Scholar]
  • Valavanides M.S., Totaj E., Tsokopoulos M. (2016) Energy efficiency characteristics in steady-state relative permeability diagrams of two-phase flows in porous media, J. Petrol. Sci. Eng. 147, 181–201, doi: 10.1016/j.petrol.2016.04.039. [CrossRef] [Google Scholar]
  • Van de Merwe W., Nicol W. (2009) Trickle flow hydrodynamic multiplicity: Experimental observations and pore-scale capillary mechanism, Chem. Eng. Sci. 64, 1267–1284, doi:10.1016/j.ces.2008.10.069. [CrossRef] [Google Scholar]
  • Vizika O., Avraam D.G., Payatakes A.C. (1994) On the role of viscosity ratio during low-capillary-number forced imbibition in porous media, J. Colloid Interface Sci. 165, 386–401. [CrossRef] [Google Scholar]
  • Youssef S., Rosenberg E., Deschamps H., Oughanem R., Maire E., Mokso R. (2014) Oil ganglia dynamics in natural porous media during surfactant flooding captured by ultra-fast x-ray microtomography, SCA2014-23, 2014, Int. Symp. Soc. Core Anal., Avignon, France, 11–18 September. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.