Open Access
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Numéro d'article 8
Nombre de pages 18
Publié en ligne 24 avril 2018
  • Awada A., Santo M., Lougheed D., Xu D., Virues C. (2015) Is that interference? A workflow for identifying and analyzing communication through hydraulic fractures in a multi-well pad, Soc. Petrol. Engs., doi:10.2118/178509-MS. [Google Scholar]
  • Baroni A., Delorme M., Khvoenkova N. (2015) Forecasting production in shale and tight reservoirs: a practical simulation method capturing the complex hydraulic fracturing physics, in: SPE Middle East oil & Gas Show and Conference, Society of Petroleum Engineers. [Google Scholar]
  • Brown M., Ozkan E., Raghavan R., Kazemi H. (2011) Practical solutions for pressure-transient responses of fractured horizontal wells in unconventional shale reservoirs, Soc. Petrol. Engs., doi:10.2118/125043-PA. [Google Scholar]
  • Chen Z., Lia, X., Zha X., Lv S., Zhu L. (2016) A semianalytical approach for obtaining type curves of multiple-fractured horizontal wells with secondary-fracture networks, Soc. Petrol. Engs., doi:10.2118/178913-PA. [Google Scholar]
  • Cipolla C., Wallace J. (2014) Stimulated reservoir volume: a misapplied concept? Soc. Petrol. Engs., doi:10.2118/168596-MS. [Google Scholar]
  • de Swaan A. (1990) Influence of shape and skin of matrix-rock blocks on pressure transients in fractured reservoirs, SPE Form. Eval., 50, 4, 344–352. [CrossRef] [Google Scholar]
  • Farah N., Ding D.Y. (2016) Discrete fracture model based on multiple interacting continua proximity function for unconventional reservoirs, in: ECMOR XV − 15th European Conference on the Mathematics of Oil Recovery. [Google Scholar]
  • Farley T., Hutchinson T. (2014) Multi-well facility optimization, Unconventional Resources Technology Conference, Denver, Colorado, pp. 2656–2660, doi:10.15530/urtec-2014-1922761. [Google Scholar]
  • Guindon L. (2015) Determining interwell connectivity and reservoir complexity through fracturing pressure hits and production-interference analysis, Soc. Petrol. Engs., doi:10.2118/0315-088-JCPT [Google Scholar]
  • Jia P., Cheng L., Huang S., Cao R., Xu Z. (2015) A semi-analytical model for production simulation of complex fracture network in unconventional reservoirs, Soc. Petrol. Engs., doi:10.2118/176227-MS. [Google Scholar]
  • Jones J.R., Volz R., Djasmari W. (2013) Fracture complexity impacts on pressure transient responses from horizontal wells completed with multiple hydraulic fracture stages, Soc. Petrol. Engs., doi:10.2118/167120-MS. [Google Scholar]
  • Karimi-Fard M., Durlofsky L.J., Aziz. K. (2003) An efficient discrete fracture model applicable for general purpose reservoir simulators, SPE J., 9, 2, 227–236. [Google Scholar]
  • Kaviani D., Valko P.P., Jensen J.L. (2010) Application of the multiwell productivity index-based method to evaluate interwell connectivity, Soc. Petrol. Engs., doi:10.2118/129965-MS. [Google Scholar]
  • Khvoenkova N., Delorme M. (2011) An optimal method to model transient flows in 3D discrete fracture network, in: IAMG conference, pp. 1238–1249. [Google Scholar]
  • Landereau P., Noetinger B., Quintard M. (2001) Quasi-steady two-equation models for diffusive transport in fractured porous media: large-scale properties for densely fractured systems, Adv. Water Resour., 24, 8, 863–876. [CrossRef] [Google Scholar]
  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40, 9, 1361–1403. [CrossRef] [Google Scholar]
  • Lee S.T., Brockenbrough J.R. (1986) A new approximate analytic solution for finite-conductivity vertical fractures, Soc. Petrol. Engs., doi:10.2118/12013-PA. [Google Scholar]
  • Liu M., Xiao C., Wang Y., Li Z., Zhang Y., Chen S., Wang G. (2015) Sensitivity analysis of geometry for multi-stage fractured horizontal wells with consideration of finite-conductivity fractures in shale gas reservoirs, J. Natural Gas Sci. Eng. 22, 182–195. [CrossRef] [Google Scholar]
  • Mirzaei M., Cipolla C.L. (2012) A workflow for modeling and simulation of hydraulic fractures in unconventional gas reservoirs, Soc. Petrol. Engs., doi:10.2118/153022-MS. [Google Scholar]
  • Noetinger B., Estebenet T., Landereau P. (2001) A direct determination of the transient exchange term of fractured media using a continuous time random walk method, Transp. Porous Media, 44, 3, 539–557. [Google Scholar]
  • Noetinger B. (2015) A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks accounting for matrix to fracture flow, J. Comput. Phys. 283, 205–223. [CrossRef] [Google Scholar]
  • Ozkan E., Brown M.L., Raghavan R., Kazemi H. (2011) Comparison of fractured-horizontal-well performance in tight sand and shale reservoirs, Soc. Petrol. Engs., doi:10.2118/121290-PA. [Google Scholar]
  • Ozkan E., Raghavan R. (1991) New solutions for well-test-analysis problems: part 1-analytical considerations (includes associated papers 28666 and 29213), Soc. Petrol. Engs., doi:10.2118/18615-PA. [Google Scholar]
  • Pedrosa O.A. (1986). Pressure transient response in stress-sensitive formations, Soc. Petrol. Engs., doi:10.2118/15115-MS. [Google Scholar]
  • Sardinha C.M., Petr C., Lehmann J., Pyecroft J.F., Merkle S. (2014) Determining interwell connectivity and reservoir complexity through frac pressure hits and production interference analysis, Soc. Petrol. Engs., doi:10.2118/171628-MS. [Google Scholar]
  • Soroush M., Jensen J., Kaviani D. (2013) Interwell connectivity evaluation in cases of frequent production interruptions, Soc. Petrol. Engs., doi:10.2118/165567-MS. [Google Scholar]
  • Stehfest H. (1970) Algorithm 368: numerical inversion of laplace transforms [D5], Commun. ACM 13, 1, 47–49. [CrossRef] [Google Scholar]
  • Tian L., Xiao C., Liu M., Gu D., Song G., Cao H., Li X. (2014) Well testing model for multi-fractured horizontal well for shale gas reservoirs with consideration of dual diffusion in matrix, J. Nat. Gas Sci. Eng. 21, 283–295. [CrossRef] [Google Scholar]
  • Tian L., Xiao C., Xie Q., Yang Y., Zhang Y., Wang Y. (2016) Quantitative determination of abandonment pressure for CO2 storage in depleted shale gas reservoirs by free-simulator approach, J. Nat. Gas Sci. Eng. 36, 519–539. [Google Scholar]
  • Wang H.T. (2014) Performance of multiple fractured horizontal wells in shale gas reservoirs with consideration of multiple mechanisms, J. Hydrol. 510, 299–312. [CrossRef] [Google Scholar]
  • Xiao C., Tian L., Yang Y., Zhang Y., Gu D., Chen S. (2016) Comprehensive application of semi-analytical PTA and RTA to quantitatively determine abandonment pressure for CO2 storage in depleted shale gas reservoirs, J. Petrol. Sci. Eng. 146, 813–831. [CrossRef] [Google Scholar]
  • Yu W., Wu K., Sepehrnoori K. (2015) A semianalytical model for production simulation from nonplanar hydraulic-fracture geometry in tight oil reservoirs, Soc. Petrol. Engs., doi:10.2118/178440-PA. [Google Scholar]
  • Zeng F., Zhao G., Liu H. (2012) A new model for reservoirs with a discrete-fracture system, J. Can. Pet. Technol. 51, 2, 127–136, SPE-150627-PA. [CrossRef] [Google Scholar]
  • Zhou W., Banerjee R., Poe B.D., Spath J., Thambynayagam M. (2014) Semianalytical Production Simulation of Complex Hydraulic-Fracture Networks, Soc. Petrol. Engs., doi:10.2118/157367-PA. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.