Open Access

Cet article a un erratum : [erratum]

Numéro
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Numéro d'article 14
Nombre de pages 14
DOI https://doi.org/10.2516/ogst/2018004
Publié en ligne 10 mai 2018
  • Ahmadpour M., Siavashi M, Doranehgard M.H. (2016) Numerical simulation of two-phase flow in fractured porous media using streamline simulation and IMPES methods and comparing results with a commercial software, J. Cent. South Univ. 23, 10, 2630–2637. [CrossRef] [Google Scholar]
  • Al-Huthali A., Datta-Gupta A. (2004) Streamline simulation of counter-current imbibition in naturally fractured reservoirs, J. Pet. Sci. Eng. 43, 3–4, 271–300. [CrossRef] [Google Scholar]
  • Baker R. (2001) Streamline technology: reservoir history matching and forecasting its success, limitations, and future, J. Can. Pet. Technol. 40, 4, 23–27. [CrossRef] [Google Scholar]
  • Barenblatt G.I., Zheltov I.P., Kochina I.N. (1960) Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata], J. Appl. Math. Mech. 24, 5, 1286–1303. [CrossRef] [Google Scholar]
  • Batycky R.P, Blunt M.J., Thiele M.R. (1997) A 3D field-scale streamline-based reservoir simulator, SPE Reserv. Eng. 12, 04, 246–254. [CrossRef] [Google Scholar]
  • Biagi J., Agarwal R., Zhang Z. (2016) Simulation and optimization of enhanced gas recovery utilizing CO2, Energy 94, 7, 78–86. [CrossRef] [Google Scholar]
  • Bourbiaux B. (2010) Fractured reservoir simulation: a challenging and rewarding issue, Oil Gas Sci. Technol. − Rev. IFP 65, 2, 227–238. [CrossRef] [Google Scholar]
  • Bourbiaux B., Cacas M.C., Sarda S., Sabathier J.C. (1998) A rapid and efficient methodology to convert fractured reservoir images into a dual-porosity model, Rev. IFP 53, 6, 785–799. [CrossRef] [Google Scholar]
  • Brooks R., Corey T. (1964) HYDRAU uc properties of porous media, Hydrology Papers, Colorado State University 24. [Google Scholar]
  • Chen Z., Huan G., Ma Y. (2006) Computational methods for multiphase flows in porous media, SIAM, Philadelphia, USA. [CrossRef] [Google Scholar]
  • Choobineh M.J., Siavashi M., Nakhaee A. (2015) Optimization of oil production in water injection process using ABC and SQP algorithms employing streamline simulation technique, Modares Mech. Eng. 15, 5, 227–238. [Google Scholar]
  • Christie M.A., Blunt M.J. (2001) Tenth SPE comparative solution project: a comparison of upscaling techniques, in: SPE Reservoir Simulation Symposium, Society of Petroleum Engineers. [Google Scholar]
  • Computer-Modeling-Group (2007) Launcher user's guide, computer modeling group ltd, calgary, advanced oil/gas reservoir simulator. [Google Scholar]
  • Datta-Gupta A., King M.J. (2007). Streamline simulation: theory and practice, Society of Petroleum Engineers Richardson, Richardson, TX, USA. [Google Scholar]
  • de Swaan A. (1978) Theory of waterflooding in fractured reservoirs, Soc. Pet. Eng. J. 18, 02, 117–122. [CrossRef] [Google Scholar]
  • Di Donato G., Blunt M.J. (2004) Streamline-based dual-porosity simulation of reactive transport and flow in fractured reservoirs, Water Resour. Res. 40, 4, W04203. [CrossRef] [Google Scholar]
  • Di Donato G., Huang W., Blunt M. (2003). Streamline-based dual porosity simulation of fractured reservoirs, in: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Doranehgard M.H., Siavashi M. (2018) The effect of temperature dependent relative permeability on heavy oil recovery during hot water injection process using streamline-based simulation, Appl. Therm. Eng. 129, 11, 106–116. [CrossRef] [Google Scholar]
  • Gilman J.R. (2003) Practical aspects of simulation of fractured reservoirs, in: International Forum on Reservoir Simulation, Buhl, Baden-Baden, Germany. [Google Scholar]
  • Gilman J.R., Kazemi H. (1983) Improvements in simulation of naturally fractured reservoirs, SPE J. 23, 4, 695–707. [CrossRef] [Google Scholar]
  • Hassane T.F.R. (2013) The application of streamline reservoir simulation calculations to the management of oilfield scale, Heriot-Watt University, Edinburgh, Scotland, UK. [Google Scholar]
  • Jerbi C., Fourno A., Noetinger B., Delay F. (2017) A new estimation of equivalent matrix block sizes in fractured media with two-phase flow applications in dual porosity models, J. Hydrol. 548, 40, 508–523. [CrossRef] [Google Scholar]
  • Kazemi H., Merrill L.S. Jr., Porterfield K.L., Zeman P. (1976) Numerical simulation of water-oil flow in naturally fractured reservoirs, Soc. Pet. Eng. J. 16, 06, 317–326. [CrossRef] [Google Scholar]
  • Landereau P., Noetinger B., Quintard M. (2001) Quasi-steady two-equation models for diffusive transport in fractured porous media: large-scale properties for densely fractured systems, Adv. Water Resour. 24, 8, 863–876. [CrossRef] [Google Scholar]
  • LeBlanc J.L., Caudle B.H. (1971) A streamline model for secondary recovery, Soc. Pet. Eng. J. 11, 01, 7–12. [CrossRef] [Google Scholar]
  • Lemonnier P., Bourbiaux B. (2010) Simulation of naturally fractured reservoirs. State of the art, Part 1-Physical mechanisms and simulator formulation, Oil Gas Sci. Technol. − Rev. IFP 65, 2, 239–262. [CrossRef] [Google Scholar]
  • Noetinger B., Roubinet D., Russian A., Le Borgne T., Delay F., Dentz M., de Dreuzy J.-R., Gouze P. (2016) Random walk methods for modeling hydrodynamic transport in porous and fractured media from pore to reservoir scale, Transp. Porous Media 115, 2, 345–385. [CrossRef] [Google Scholar]
  • Pollock D.W. (1988) Semianalytical computation of path lines for finite-difference models, Groundwater 26, 6, 743–750. [CrossRef] [Google Scholar]
  • Sarma P., Aziz K. (2004). New transfer functions for simulation of naturally fractured reservoirs with dual porosity models, in: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Siavashi M., Blunt M.J., Raisee M., Pourafshary P. (2014) Three-dimensional streamline-based simulation of non-isothermal two-phase flow in heterogeneous porous media, Comput. Fluids 103, 10, 116–131. [CrossRef] [Google Scholar]
  • Siavashi M., Tehrani M.R., Nakhaee A. (2016) Efficient particle swarm optimization of well placement to enhance oil recovery using a novel streamline-based objective function, J. Energy Resour. Technol. 138, 5, 052903. [CrossRef] [Google Scholar]
  • Thiele M.R. (2001) Streamline simulation, in: Proc. Sixth International Forum on Reservoir Simulation, citeseer. [Google Scholar]
  • Vitoonkijvanich S., AlSofi A.M., Blunt M.J. (2015) Design of foam-assisted carbon dioxide storage in a North Sea aquifer using streamline-based simulation, Int. J. Greenh. Gas Control 33, 12, 113–121. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.