Open Access

This article has an erratum: [https://doi.org/10.2516/ogst/2018068]


Issue
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Article Number 14
Number of page(s) 14
DOI https://doi.org/10.2516/ogst/2018004
Published online 10 May 2018
  • Ahmadpour M., Siavashi M, Doranehgard M.H. (2016) Numerical simulation of two-phase flow in fractured porous media using streamline simulation and IMPES methods and comparing results with a commercial software, J. Cent. South Univ. 23, 10, 2630–2637. [CrossRef] [Google Scholar]
  • Al-Huthali A., Datta-Gupta A. (2004) Streamline simulation of counter-current imbibition in naturally fractured reservoirs, J. Pet. Sci. Eng. 43, 3–4, 271–300. [CrossRef] [Google Scholar]
  • Baker R. (2001) Streamline technology: reservoir history matching and forecasting its success, limitations, and future, J. Can. Pet. Technol. 40, 4, 23–27. [CrossRef] [Google Scholar]
  • Barenblatt G.I., Zheltov I.P., Kochina I.N. (1960) Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata], J. Appl. Math. Mech. 24, 5, 1286–1303. [CrossRef] [Google Scholar]
  • Batycky R.P, Blunt M.J., Thiele M.R. (1997) A 3D field-scale streamline-based reservoir simulator, SPE Reserv. Eng. 12, 04, 246–254. [CrossRef] [Google Scholar]
  • Biagi J., Agarwal R., Zhang Z. (2016) Simulation and optimization of enhanced gas recovery utilizing CO2, Energy 94, 7, 78–86. [CrossRef] [Google Scholar]
  • Bourbiaux B. (2010) Fractured reservoir simulation: a challenging and rewarding issue, Oil Gas Sci. Technol. − Rev. IFP 65, 2, 227–238. [Google Scholar]
  • Bourbiaux B., Cacas M.C., Sarda S., Sabathier J.C. (1998) A rapid and efficient methodology to convert fractured reservoir images into a dual-porosity model, Rev. IFP 53, 6, 785–799. [CrossRef] [Google Scholar]
  • Brooks R., Corey T. (1964) HYDRAU uc properties of porous media, Hydrology Papers, Colorado State University 24. [Google Scholar]
  • Chen Z., Huan G., Ma Y. (2006) Computational methods for multiphase flows in porous media, SIAM, Philadelphia, USA. [Google Scholar]
  • Choobineh M.J., Siavashi M., Nakhaee A. (2015) Optimization of oil production in water injection process using ABC and SQP algorithms employing streamline simulation technique, Modares Mech. Eng. 15, 5, 227–238. [Google Scholar]
  • Christie M.A., Blunt M.J. (2001) Tenth SPE comparative solution project: a comparison of upscaling techniques, in: SPE Reservoir Simulation Symposium, Society of Petroleum Engineers. [Google Scholar]
  • Computer-Modeling-Group (2007) Launcher user's guide, computer modeling group ltd, calgary, advanced oil/gas reservoir simulator. [Google Scholar]
  • Datta-Gupta A., King M.J. (2007). Streamline simulation: theory and practice, Society of Petroleum Engineers Richardson, Richardson, TX, USA. [Google Scholar]
  • de Swaan A. (1978) Theory of waterflooding in fractured reservoirs, Soc. Pet. Eng. J. 18, 02, 117–122. [CrossRef] [Google Scholar]
  • Di Donato G., Blunt M.J. (2004) Streamline-based dual-porosity simulation of reactive transport and flow in fractured reservoirs, Water Resour. Res. 40, 4, W04203. [CrossRef] [Google Scholar]
  • Di Donato G., Huang W., Blunt M. (2003). Streamline-based dual porosity simulation of fractured reservoirs, in: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Doranehgard M.H., Siavashi M. (2018) The effect of temperature dependent relative permeability on heavy oil recovery during hot water injection process using streamline-based simulation, Appl. Therm. Eng. 129, 11, 106–116. [CrossRef] [Google Scholar]
  • Gilman J.R. (2003) Practical aspects of simulation of fractured reservoirs, in: International Forum on Reservoir Simulation, Buhl, Baden-Baden, Germany. [Google Scholar]
  • Gilman J.R., Kazemi H. (1983) Improvements in simulation of naturally fractured reservoirs, SPE J. 23, 4, 695–707. [Google Scholar]
  • Hassane T.F.R. (2013) The application of streamline reservoir simulation calculations to the management of oilfield scale, Heriot-Watt University, Edinburgh, Scotland, UK. [Google Scholar]
  • Jerbi C., Fourno A., Noetinger B., Delay F. (2017) A new estimation of equivalent matrix block sizes in fractured media with two-phase flow applications in dual porosity models, J. Hydrol. 548, 40, 508–523. [CrossRef] [Google Scholar]
  • Kazemi H., Merrill L.S. Jr., Porterfield K.L., Zeman P. (1976) Numerical simulation of water-oil flow in naturally fractured reservoirs, Soc. Pet. Eng. J. 16, 06, 317–326. [CrossRef] [Google Scholar]
  • Landereau P., Noetinger B., Quintard M. (2001) Quasi-steady two-equation models for diffusive transport in fractured porous media: large-scale properties for densely fractured systems, Adv. Water Resour. 24, 8, 863–876. [CrossRef] [Google Scholar]
  • LeBlanc J.L., Caudle B.H. (1971) A streamline model for secondary recovery, Soc. Pet. Eng. J. 11, 01, 7–12. [CrossRef] [Google Scholar]
  • Lemonnier P., Bourbiaux B. (2010) Simulation of naturally fractured reservoirs. State of the art, Part 1-Physical mechanisms and simulator formulation, Oil Gas Sci. Technol. − Rev. IFP 65, 2, 239–262. [Google Scholar]
  • Noetinger B., Roubinet D., Russian A., Le Borgne T., Delay F., Dentz M., de Dreuzy J.-R., Gouze P. (2016) Random walk methods for modeling hydrodynamic transport in porous and fractured media from pore to reservoir scale, Transp. Porous Media 115, 2, 345–385. [Google Scholar]
  • Pollock D.W. (1988) Semianalytical computation of path lines for finite-difference models, Groundwater 26, 6, 743–750. [CrossRef] [Google Scholar]
  • Sarma P., Aziz K. (2004). New transfer functions for simulation of naturally fractured reservoirs with dual porosity models, in: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Siavashi M., Blunt M.J., Raisee M., Pourafshary P. (2014) Three-dimensional streamline-based simulation of non-isothermal two-phase flow in heterogeneous porous media, Comput. Fluids 103, 10, 116–131. [CrossRef] [Google Scholar]
  • Siavashi M., Tehrani M.R., Nakhaee A. (2016) Efficient particle swarm optimization of well placement to enhance oil recovery using a novel streamline-based objective function, J. Energy Resour. Technol. 138, 5, 052903. [CrossRef] [Google Scholar]
  • Thiele M.R. (2001) Streamline simulation, in: Proc. Sixth International Forum on Reservoir Simulation, citeseer. [Google Scholar]
  • Vitoonkijvanich S., AlSofi A.M., Blunt M.J. (2015) Design of foam-assisted carbon dioxide storage in a North Sea aquifer using streamline-based simulation, Int. J. Greenh. Gas Control 33, 12, 113–121. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.