Open Access
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Article Number 8
Number of page(s) 18
Published online 24 April 2018
  • Awada A., Santo M., Lougheed D., Xu D., Virues C. (2015) Is that interference? A workflow for identifying and analyzing communication through hydraulic fractures in a multi-well pad, Soc. Petrol. Engs., doi:10.2118/178509-MS. [Google Scholar]
  • Baroni A., Delorme M., Khvoenkova N. (2015) Forecasting production in shale and tight reservoirs: a practical simulation method capturing the complex hydraulic fracturing physics, in: SPE Middle East oil & Gas Show and Conference, Society of Petroleum Engineers. [Google Scholar]
  • Brown M., Ozkan E., Raghavan R., Kazemi H. (2011) Practical solutions for pressure-transient responses of fractured horizontal wells in unconventional shale reservoirs, Soc. Petrol. Engs., doi:10.2118/125043-PA. [Google Scholar]
  • Chen Z., Lia, X., Zha X., Lv S., Zhu L. (2016) A semianalytical approach for obtaining type curves of multiple-fractured horizontal wells with secondary-fracture networks, Soc. Petrol. Engs., doi:10.2118/178913-PA. [Google Scholar]
  • Cipolla C., Wallace J. (2014) Stimulated reservoir volume: a misapplied concept? Soc. Petrol. Engs., doi:10.2118/168596-MS. [Google Scholar]
  • de Swaan A. (1990) Influence of shape and skin of matrix-rock blocks on pressure transients in fractured reservoirs, SPE Form. Eval., 50, 4, 344–352. [CrossRef] [Google Scholar]
  • Farah N., Ding D.Y. (2016) Discrete fracture model based on multiple interacting continua proximity function for unconventional reservoirs, in: ECMOR XV − 15th European Conference on the Mathematics of Oil Recovery. [Google Scholar]
  • Farley T., Hutchinson T. (2014) Multi-well facility optimization, Unconventional Resources Technology Conference, Denver, Colorado, pp. 2656–2660, doi:10.15530/urtec-2014-1922761. [Google Scholar]
  • Guindon L. (2015) Determining interwell connectivity and reservoir complexity through fracturing pressure hits and production-interference analysis, Soc. Petrol. Engs., doi:10.2118/0315-088-JCPT [Google Scholar]
  • Jia P., Cheng L., Huang S., Cao R., Xu Z. (2015) A semi-analytical model for production simulation of complex fracture network in unconventional reservoirs, Soc. Petrol. Engs., doi:10.2118/176227-MS. [Google Scholar]
  • Jones J.R., Volz R., Djasmari W. (2013) Fracture complexity impacts on pressure transient responses from horizontal wells completed with multiple hydraulic fracture stages, Soc. Petrol. Engs., doi:10.2118/167120-MS. [Google Scholar]
  • Karimi-Fard M., Durlofsky L.J., Aziz. K. (2003) An efficient discrete fracture model applicable for general purpose reservoir simulators, SPE J., 9, 2, 227–236. [Google Scholar]
  • Kaviani D., Valko P.P., Jensen J.L. (2010) Application of the multiwell productivity index-based method to evaluate interwell connectivity, Soc. Petrol. Engs., doi:10.2118/129965-MS. [Google Scholar]
  • Khvoenkova N., Delorme M. (2011) An optimal method to model transient flows in 3D discrete fracture network, in: IAMG conference, pp. 1238–1249. [Google Scholar]
  • Landereau P., Noetinger B., Quintard M. (2001) Quasi-steady two-equation models for diffusive transport in fractured porous media: large-scale properties for densely fractured systems, Adv. Water Resour., 24, 8, 863–876. [CrossRef] [Google Scholar]
  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40, 9, 1361–1403. [CrossRef] [Google Scholar]
  • Lee S.T., Brockenbrough J.R. (1986) A new approximate analytic solution for finite-conductivity vertical fractures, Soc. Petrol. Engs., doi:10.2118/12013-PA. [Google Scholar]
  • Liu M., Xiao C., Wang Y., Li Z., Zhang Y., Chen S., Wang G. (2015) Sensitivity analysis of geometry for multi-stage fractured horizontal wells with consideration of finite-conductivity fractures in shale gas reservoirs, J. Natural Gas Sci. Eng. 22, 182–195. [CrossRef] [Google Scholar]
  • Mirzaei M., Cipolla C.L. (2012) A workflow for modeling and simulation of hydraulic fractures in unconventional gas reservoirs, Soc. Petrol. Engs., doi:10.2118/153022-MS. [Google Scholar]
  • Noetinger B., Estebenet T., Landereau P. (2001) A direct determination of the transient exchange term of fractured media using a continuous time random walk method, Transp. Porous Media, 44, 3, 539–557. [Google Scholar]
  • Noetinger B. (2015) A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks accounting for matrix to fracture flow, J. Comput. Phys. 283, 205–223. [CrossRef] [Google Scholar]
  • Ozkan E., Brown M.L., Raghavan R., Kazemi H. (2011) Comparison of fractured-horizontal-well performance in tight sand and shale reservoirs, Soc. Petrol. Engs., doi:10.2118/121290-PA. [Google Scholar]
  • Ozkan E., Raghavan R. (1991) New solutions for well-test-analysis problems: part 1-analytical considerations (includes associated papers 28666 and 29213), Soc. Petrol. Engs., doi:10.2118/18615-PA. [Google Scholar]
  • Pedrosa O.A. (1986). Pressure transient response in stress-sensitive formations, Soc. Petrol. Engs., doi:10.2118/15115-MS. [Google Scholar]
  • Sardinha C.M., Petr C., Lehmann J., Pyecroft J.F., Merkle S. (2014) Determining interwell connectivity and reservoir complexity through frac pressure hits and production interference analysis, Soc. Petrol. Engs., doi:10.2118/171628-MS. [Google Scholar]
  • Soroush M., Jensen J., Kaviani D. (2013) Interwell connectivity evaluation in cases of frequent production interruptions, Soc. Petrol. Engs., doi:10.2118/165567-MS. [Google Scholar]
  • Stehfest H. (1970) Algorithm 368: numerical inversion of laplace transforms [D5], Commun. ACM 13, 1, 47–49. [CrossRef] [Google Scholar]
  • Tian L., Xiao C., Liu M., Gu D., Song G., Cao H., Li X. (2014) Well testing model for multi-fractured horizontal well for shale gas reservoirs with consideration of dual diffusion in matrix, J. Nat. Gas Sci. Eng. 21, 283–295. [CrossRef] [Google Scholar]
  • Tian L., Xiao C., Xie Q., Yang Y., Zhang Y., Wang Y. (2016) Quantitative determination of abandonment pressure for CO2 storage in depleted shale gas reservoirs by free-simulator approach, J. Nat. Gas Sci. Eng. 36, 519–539. [Google Scholar]
  • Wang H.T. (2014) Performance of multiple fractured horizontal wells in shale gas reservoirs with consideration of multiple mechanisms, J. Hydrol. 510, 299–312. [CrossRef] [Google Scholar]
  • Xiao C., Tian L., Yang Y., Zhang Y., Gu D., Chen S. (2016) Comprehensive application of semi-analytical PTA and RTA to quantitatively determine abandonment pressure for CO2 storage in depleted shale gas reservoirs, J. Petrol. Sci. Eng. 146, 813–831. [CrossRef] [Google Scholar]
  • Yu W., Wu K., Sepehrnoori K. (2015) A semianalytical model for production simulation from nonplanar hydraulic-fracture geometry in tight oil reservoirs, Soc. Petrol. Engs., doi:10.2118/178440-PA. [Google Scholar]
  • Zeng F., Zhao G., Liu H. (2012) A new model for reservoirs with a discrete-fracture system, J. Can. Pet. Technol. 51, 2, 127–136, SPE-150627-PA. [CrossRef] [Google Scholar]
  • Zhou W., Banerjee R., Poe B.D., Spath J., Thambynayagam M. (2014) Semianalytical Production Simulation of Complex Hydraulic-Fracture Networks, Soc. Petrol. Engs., doi:10.2118/157367-PA. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.